Skip to main content

A Surprisingly Simple Way of Reversing Trace Distance via Entanglement

  • Conference paper
  • 1072 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

Trace distance (between two quantum states) can be viewed as quantum generalization of statistical difference (between two probability distributions). On input a pair of quantum states (represented by quantum circuits), how to construct another pair, such that their trace distance is large (resp. small) if the original trace distance is small (resp. large)? That is, how to reverse trace distance? This problem originally arose in the study of statistical zero-knowledge quantum interactive proof. We discover a surprisingly simple way to do this job. In particular, our construction has two interesting features: first, entanglement plays a key role underlying our construction; second, strictly speaking, our construction is non-black-box.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Aroya, A., Schwartz, O., Ta-Shma, A.: Quantum expanders: Motivation and construction. Theory of Computing 6(1), 47–79 (2010)

    Article  MathSciNet  Google Scholar 

  2. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. American Mathematical Society (2002)

    Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum Informatioin. Cambridge University Press (2000)

    Google Scholar 

  4. Okamoto, T.: On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci. 60(1), 47–108 (2000)

    Article  MATH  Google Scholar 

  5. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003); Preliminary version appears in FOCS 1997

    Article  MathSciNet  Google Scholar 

  6. Vadhan, S.: Ph.D Thesis: A Study of Statistical Zero-Knowledge Proofs (1999)

    Google Scholar 

  7. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS, pp. 459–468 (2002)

    Google Scholar 

  8. Watrous, J.: Theory of Quantum Information (2008) Online Lecture Notes, http://www.cs.uwaterloo.ca/~watrous/798/

  9. Yan, J.: A surprisingly simple way of reversing trace distance via entanglement. Full version, http://lcs.ios.ac.cn/~junyan/files/Yan12_reverse-trace-full.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, J. (2012). A Surprisingly Simple Way of Reversing Trace Distance via Entanglement. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics