Abstract
Given a set of nodes \(\mathcal{V}\), where each node has some data value, the goal of data aggregation is to compute some aggregate function in the fewest timeslots possible. Aggregate functions compute the aggregated value from the data of all nodes; common examples include maximum or average. We assume the realistic physical (SINR) interference model and no knowledge of the network structure or the number of neighbors of any node; our model also uses physical carrier sensing. We present a distributed protocol to compute an aggregate function in O(D + Δlogn) timeslots, where D is the diameter of the network, Δ is the maximum number of neighbors within a given radius and n is the total number of nodes. Our protocol contributes an exponential improvement in running time compared to that in [18].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, X., Hu, X., Zhu, J.: Minimum Data Aggregation Time Problem in Wireless Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 133–142. Springer, Heidelberg (2005)
Fanghanel, F., Kesselheim, T., Racke, H., Vocking, B.: Oblivious Interference Scheduling. In: PODC (2009)
Fu, L., Liew, S., Huang, J.: Effective Carrier Sensing in CSMA Networks under Cumulative Interference. In: INFOCOM (2010)
Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR. In: Mobihoc (2007)
Goussevskaia, O., Wattenhofer, R., Halldorsson, M., Welzl, E.: Capacity of Arbitrary Wireless Networks. In: INFOCOM (2009)
Gronkvist, J., Hansson, A.: Comparison Between Graph-based and Interference Based STDMA Scheduling. In: Mobihoc (2001)
Gu, Z., Wang, G., Hua, Q.-S., Wang, Y.: Improved Minimum Latency Aggregation Scheduling in Wireless Sensor Networks under the SINR Model. In: CWSN (2011)
Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions on Information Theory (2000)
Halldorsson, M.M., Mitra, P.: Wireless Connectivity and Capacity. In: SODA (2012)
Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)
Halldorssson, M.M., Wattenhofer, R.: Computing Wireless Capacity (2010) (unpublished manuscript)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)
Hua, Q.-S., Wang, Y., Yu, D., Tan, H.: Minimum Latency Link Scheduling for Arbitrary Directed Acyclic Networks under Precedence and SINR Constraints. Journal of Interconnection Networks 12(1-2), 87–107 (2011)
Huang, S.C.-H., Wan, P., Vu, C.T., Li, Y., Yao, F.: Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks. In: INFOCOM (2007)
Kesselhelm, T.: A Constant-factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)
Kuhn, F., Locher, T., Wattenhoffer, R.: Tight Bounds for Distributed Selection. In: SPAA (2007)
Lam, N.X., An, M.K., Huynh, D.T., Nguyen, T.N.: Minimum Latency Data Aggregation in the Physical Interference Model. MSWiM (2011)
Li, H.-X., Wu, C., Hua, Q.-S., Lau, F.C.-M.: Latency-minimizing Data Aggregation in Wireless Sensor Networks under Physical Interference Model. Ad Hoc Networks (2012); Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model. MSWiM (2010)
Li, X.-Y., Wang, Y., Wang, Y.: Complexity of Data Collection, Aggregation, and Selection for Wireless Sensor Networks. IEEE Transactions on Computers (2011)
Li, X.-Y., Xu, X.H., Wang, S.G., Tang, S.J., Dai, G.J., Zhao, J.Z., Qi, Y.: Efficient Data Aggregation in Multi-hop Wireless Sensor Networks under Physical Interference Model. In: MASS (2009)
Maheshwari, R., Jain, S., Das, S.R.: A Measurement Study of Interference Modeling and Scheduling in Low-power Wireless Netowrks. In: SenSys (2008)
Moscibroda T.: The Worst Case Capacity of Wireless Sensor Networks. In: IPSN (2007)
Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Networks. In: INFOCOM (2006)
Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-based Models. In: Hotnets (2006)
Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control Meets SINR: the Scheduling Complexity of Arbitrary Topologies. In: Mobihoc (2006)
Scheideler, C., Richa, A., Santi, P.: An O(log n) Dominating Set Protocol for Wireless Ad-hoc Networks under the Physical Interference Model. In: Mobihoc (2008)
Schneider, J., Wattenhofer, R.: What Is the Use of Collision Detection (in Wireless Networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 133–147. Springer, Heidelberg (2010)
Wan, P.-J., Huang, S.C.-H., Wang, L.X., Wan, Z.Y., Jia, X.H.: Minimum-latency Aggregation Scheduling in Multihop Wireless Networks. In: Mobihoc (2009)
Yu, B., Li, J., Li, Y.: Distributed Data Aggregation Scheduling in Wireless Sensor Networks. In: INFOCOM (2009)
Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed Local Broadcasting Algorithms in the Physical Interference Model. In: DCOSS (2011)
Zheng, J., Jamalipour, A.: Wireless Sensor Networks: a Networking Perspective. Wiley-IEEE Press, Hoboken (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hobbs, N., Wang, Y., Hua, QS., Yu, D., Lau, F.C.M. (2012). Deterministic Distributed Data Aggregation under the SINR Model. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-29952-0_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29951-3
Online ISBN: 978-3-642-29952-0
eBook Packages: Computer ScienceComputer Science (R0)