Skip to main content

Deterministic Distributed Data Aggregation under the SINR Model

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

Given a set of nodes \(\mathcal{V}\), where each node has some data value, the goal of data aggregation is to compute some aggregate function in the fewest timeslots possible. Aggregate functions compute the aggregated value from the data of all nodes; common examples include maximum or average. We assume the realistic physical (SINR) interference model and no knowledge of the network structure or the number of neighbors of any node; our model also uses physical carrier sensing. We present a distributed protocol to compute an aggregate function in O(D + Δlogn) timeslots, where D is the diameter of the network, Δ is the maximum number of neighbors within a given radius and n is the total number of nodes. Our protocol contributes an exponential improvement in running time compared to that in [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, X., Hu, X., Zhu, J.: Minimum Data Aggregation Time Problem in Wireless Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 133–142. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Fanghanel, F., Kesselheim, T., Racke, H., Vocking, B.: Oblivious Interference Scheduling. In: PODC (2009)

    Google Scholar 

  3. Fu, L., Liew, S., Huang, J.: Effective Carrier Sensing in CSMA Networks under Cumulative Interference. In: INFOCOM (2010)

    Google Scholar 

  4. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR. In: Mobihoc (2007)

    Google Scholar 

  5. Goussevskaia, O., Wattenhofer, R., Halldorsson, M., Welzl, E.: Capacity of Arbitrary Wireless Networks. In: INFOCOM (2009)

    Google Scholar 

  6. Gronkvist, J., Hansson, A.: Comparison Between Graph-based and Interference Based STDMA Scheduling. In: Mobihoc (2001)

    Google Scholar 

  7. Gu, Z., Wang, G., Hua, Q.-S., Wang, Y.: Improved Minimum Latency Aggregation Scheduling in Wireless Sensor Networks under the SINR Model. In: CWSN (2011)

    Google Scholar 

  8. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions on Information Theory (2000)

    Google Scholar 

  9. Halldorsson, M.M., Mitra, P.: Wireless Connectivity and Capacity. In: SODA (2012)

    Google Scholar 

  10. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Halldorssson, M.M., Wattenhofer, R.: Computing Wireless Capacity (2010) (unpublished manuscript)

    Google Scholar 

  12. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  13. Hua, Q.-S., Wang, Y., Yu, D., Tan, H.: Minimum Latency Link Scheduling for Arbitrary Directed Acyclic Networks under Precedence and SINR Constraints. Journal of Interconnection Networks 12(1-2), 87–107 (2011)

    Google Scholar 

  14. Huang, S.C.-H., Wan, P., Vu, C.T., Li, Y., Yao, F.: Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks. In: INFOCOM (2007)

    Google Scholar 

  15. Kesselhelm, T.: A Constant-factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)

    Google Scholar 

  16. Kuhn, F., Locher, T., Wattenhoffer, R.: Tight Bounds for Distributed Selection. In: SPAA (2007)

    Google Scholar 

  17. Lam, N.X., An, M.K., Huynh, D.T., Nguyen, T.N.: Minimum Latency Data Aggregation in the Physical Interference Model. MSWiM (2011)

    Google Scholar 

  18. Li, H.-X., Wu, C., Hua, Q.-S., Lau, F.C.-M.: Latency-minimizing Data Aggregation in Wireless Sensor Networks under Physical Interference Model. Ad Hoc Networks (2012); Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model. MSWiM (2010)

    Google Scholar 

  19. Li, X.-Y., Wang, Y., Wang, Y.: Complexity of Data Collection, Aggregation, and Selection for Wireless Sensor Networks. IEEE Transactions on Computers (2011)

    Google Scholar 

  20. Li, X.-Y., Xu, X.H., Wang, S.G., Tang, S.J., Dai, G.J., Zhao, J.Z., Qi, Y.: Efficient Data Aggregation in Multi-hop Wireless Sensor Networks under Physical Interference Model. In: MASS (2009)

    Google Scholar 

  21. Maheshwari, R., Jain, S., Das, S.R.: A Measurement Study of Interference Modeling and Scheduling in Low-power Wireless Netowrks. In: SenSys (2008)

    Google Scholar 

  22. Moscibroda T.: The Worst Case Capacity of Wireless Sensor Networks. In: IPSN (2007)

    Google Scholar 

  23. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Networks. In: INFOCOM (2006)

    Google Scholar 

  24. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-based Models. In: Hotnets (2006)

    Google Scholar 

  25. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control Meets SINR: the Scheduling Complexity of Arbitrary Topologies. In: Mobihoc (2006)

    Google Scholar 

  26. Scheideler, C., Richa, A., Santi, P.: An O(log n) Dominating Set Protocol for Wireless Ad-hoc Networks under the Physical Interference Model. In: Mobihoc (2008)

    Google Scholar 

  27. Schneider, J., Wattenhofer, R.: What Is the Use of Collision Detection (in Wireless Networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 133–147. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Wan, P.-J., Huang, S.C.-H., Wang, L.X., Wan, Z.Y., Jia, X.H.: Minimum-latency Aggregation Scheduling in Multihop Wireless Networks. In: Mobihoc (2009)

    Google Scholar 

  29. Yu, B., Li, J., Li, Y.: Distributed Data Aggregation Scheduling in Wireless Sensor Networks. In: INFOCOM (2009)

    Google Scholar 

  30. Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed Local Broadcasting Algorithms in the Physical Interference Model. In: DCOSS (2011)

    Google Scholar 

  31. Zheng, J., Jamalipour, A.: Wireless Sensor Networks: a Networking Perspective. Wiley-IEEE Press, Hoboken (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hobbs, N., Wang, Y., Hua, QS., Yu, D., Lau, F.C.M. (2012). Deterministic Distributed Data Aggregation under the SINR Model. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics