Abstract
The maximum bipartite matching problem, an important problem in combinatorial optimization, has been studied for a long time. In order to solve problems for very large structured graphs in reasonable time and space, implicit algorithms have been investigated. Any object to be manipulated is binary encoded and problems have to be solved mainly by functional operations on the corresponding Boolean functions. OBDDs are a popular data structure for Boolean functions, therefore, OBDD-based algorithms have been used as an heuristic approach to handle large input graphs. Here, two OBDD-based maximum bipartite matching algorithms are presented, which are the first ones using only a sublinear number of operations (with respect to the number of vertices of the input graph) for a problem unknown to be in NC, the complexity class that contains all problems computable in deterministic polylogarithmic time with polynomially many processors. Furthermore, the algorithms are experimentally evaluated.
The first two authors have been supported by DFG project BO 2755/1-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
Berge, C.: Two theorems in graph theory. Proc. of National Academy of Science of the USA 43(9), 842–844 (1957)
Bloem, R., Gabow, H.N., Somenzi, F.: An Algorithm for Strongly Connected Component Analysis in n logn Symbolic Steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)
Bollig, B.: Exponential space complexity for OBDD-based reachability analysis. Information Processing Letters 110, 924–927 (2010)
Bollig, B.: Exponential Space Complexity for Symbolic Maximum Flow Algorithms in 0-1 Networks. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 186–197. Springer, Heidelberg (2010)
Bollig, B.: On Symbolic OBDD-Based Algorithms for the Minimum Spanning Tree Problem. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 16–30. Springer, Heidelberg (2010)
Bollig, B.: On Symbolic Representations of Maximum Matchings and (Un)directed Graphs. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 286–300. Springer, Heidelberg (2010)
Bollig, B., Löbbing, M., Wegener, I.: On the effect of local changes in the variable ordering of ordered decision diagrams. Information Processing Letters 59, 233–239 (1996)
Bollig, B., Pröger, T.: An Efficient Implicit OBDD-Based Algorithm for Maximal Matchings. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 143–154. Springer, Heidelberg (2012)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35, 677–691 (1986)
Charles, D.X., Chickering, M., Devanur, N.R., Jain, K., Sanghi, M.: Fast algorithms for finding matchings in lopsided bipartite graphs with applications to display ads. In: Proc. of ACM Conference on Electronic Commerce 2010, pp. 121–128 (2010)
Cherkassky, B.V., Goldberg, A.V., Martin, P., Setubal, J.C., Stolfi, J.: Augment or push: a computational study of bipartite matching and unit-capacity flow algorithms. ACM Journal of Experimental Algorithmics 3, 8 (1998)
Feigenbaum, J., Kannan, S., Vardi, M.V., Viswanathan, M.: Complexity of Problems on Graphs Represented as OBDDs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 216–226. Springer, Heidelberg (1998)
Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: Proc. of SODA, pp. 573–582. ACM Press (2003)
Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connectivity related problems. Algorithmica 50, 120–158 (2008)
Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, E.: Using interior-point methods for fast parallel algorithms for bipartite matching and related problems. SIAM Journal on Computing 21(1), 140–150 (1992)
Goldberg, A.V., Plotkin, S.K., Vaidya, P.M.: Sublinear time parallel algorithms for matching and related problems. Journal of Algorithms 14(2), 180–213 (1993)
Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0-1 networks. Formal Methods in System Design 10, 207–219 (1997)
Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)
Iwano, K.: An improvement of Goldberg, Plotkin, and Vaidya’s maximal node-disjoint paths algorithm. Information Processing Letters 32, 25–27 (1989)
Monien, B., Preis, R., Diekmann, R.: Quality matching and local improvement for multilevel graph-partitioning. Parallel Computing 26, 1609–1634 (2000)
Möhring, R.H., Müller-Hannemann, M.: Complexity and modeling aspects of mesh refinement into quadrilaterals. Algorithmica 26, 148–172 (2000)
Negruseri, C.S., Pasoi, M.B., Stanley, B., Stein, C., Strat, C.G.: Solving maximum flow problems on real world bipartite graphs. In: Proc. of ALENEX, pp. 14–28. SIAM (2009)
Sawitzki, D.: Implicit Flow Maximization by Iterative Squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)
Sawitzki, D.: Exponential Lower Bounds on the Space Complexity of OBDD-Based Graph Algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 781–792. Springer, Heidelberg (2006)
Sawitzki, D.: The Complexity of Problems on Implicitly Represented Inputs. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 471–482. Springer, Heidelberg (2006)
Sawitzki, D.: Implicit simulation of FNC algorithms. ECCC Report TR07-028 (2007)
Spencer, T.H.: Parallel Approximate Matching. Parallel Algorithms and Applications 2(1-2), 115–121 (1994)
Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)
Woelfel, P.: Symbolic topological sorting with OBDDs. Journal of Discrete Algorithms 4(1), 51–71 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bollig, B., Gillé, M., Pröger, T. (2012). Implicit Computation of Maximum Bipartite Matchings by Sublinear Functional Operations. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-29952-0_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29951-3
Online ISBN: 978-3-642-29952-0
eBook Packages: Computer ScienceComputer Science (R0)