Skip to main content

Proving Liveness Property under Strengthened Compassion Requirements

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

Deductive rules are useful for proving properties with fairness constraints and there have been many studies on such rules with justice and compassion constraints. This paper focuses on system specifications with strengthened compassion that impose constraints on transitions involving states and their successors. A deductive rule for proving liveness properties under strengthened compassion is presented, and proofs of the soundness and the relative completeness of the rule are also presented.

Supported by the National Natural Science Foundation of China under Grant Nos. 60721061, 60833001, and the CAS Innovation Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lehmann, D.J., Pnueli, A., Stavi, J.: Impartiality, Justice and Fairness: The Ethics of Concurrent Termination. In: ICALP 1981, vol. 115, pp. 264–277. Springer, Heidelberg (1981)

    Google Scholar 

  2. Pnueli, A., Sa’ar, Y.: All You Need Is Compassion. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 233–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng. 3(2), 125–143 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fischer, M., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-State Anonymous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing Population Protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  7. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 91–130 (1991)

    Article  Google Scholar 

  8. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Inf. Comput. 163(1), 203–243 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balaban, I., Pnueli, A., Zuck, L.D.: Modular ranking abstraction. Int. J. Found. Comput. Sci. 18(1), 5–44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Long, T., Zhang, W.: Auxiliary Constructs for Proving Liveness in Compassion Discrete Systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 276–290. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Balaban, I., Pnueli, A., Zuck, L.D.: Proving the Refuted: Symbolic Model Checkers as Proof Generators. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality, and Correctness. LNCS, vol. 5930, pp. 221–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: STOC, pp. 278–290 (1983)

    Google Scholar 

  14. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Response. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 279–361. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Main, M.G.: Complete proof rules for strong fairness and strong extreme fairness. Theor. Comput. Sci. 111(1&2), 125–143 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Long, T., Zhang, W.: Proving liveness property under strengthened compassion requirements. Technical Report, ISCAS–SKLCS–12–01, Institute of Sofware, Chinese Academy of Sciences (2012), http://lcs.ios.ac.cn/~zwh/tr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Long, T., Zhang, W. (2012). Proving Liveness Property under Strengthened Compassion Requirements. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics