Skip to main content

Submodular Minimization via Pathwidth

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

In this paper, we present a submodular minimization algorithm based on a new relationship between minimizers of a submodular set function and pathwidth defined on submodular set functions. Given a submodular set function f on a finite set V with n ≥ 2 elements and an ordered pair s,t ∈ V, let λ s,t denote the minimum f(X) over all sets X with s ∈ X ⊆ V − {t}. The pathwidth Λ(σ) of a sequence σ of all n elements in V is defined to be the maximum f(V(σ′)) over all nonempty and proper prefixes σ′ of σ, where V(σ′) denotes the set of elements occurred in σ′. The pathwidth Λ s,t of f from s to t is defined to be the minimum pathwidth Λ(σ) over all sequences σ of V which start with element s and end up with t. Given a real k ≥ f({s}), our algorithm checks whether Λ s,t  ≤ k or not and computes λ s,t (when Λ s,t  ≤ k) in O(n Δ(k) + 1) oracle-time, where Δ(k) is the number of distinct values of f(X) with f(X) ≤ k overall sets X with s ∈ X ⊆ V − {t}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fleischer, L.K.: Recent progress in submodular function minimization. Optima, 1–11 (2000)

    Google Scholar 

  4. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. North-Holland, Amsterdam (2005)

    MATH  Google Scholar 

  5. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid algorithm and its consequences in combinatorial optimization. Combinatorica 1, 499–513 (1981)

    Article  Google Scholar 

  6. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)

    Book  MATH  Google Scholar 

  7. Iwata, S.: Submodular function minimization. Math. Program. 112, 45–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory Series B 82(1), 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42, 345–350 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. McCormick, S.T.: Submodular function minimization. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimization. Handbooks in Operations Research and Management Science, vol. 12. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  12. Nagamochi, H.: Minimum degree orderings. Algorithmica 56, 17–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagamochi, H., Ibaraki, T.: A note on minimizing submodular functions. Inf. Proc. Lett. 67, 239–244 (1998)

    Article  MathSciNet  Google Scholar 

  14. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  15. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program., Ser. A 118, 237–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. 82, 3–12 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P.: Graph minors III: Planar tree-width. J. Combin. Theory Ser. B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–335 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  22. Tamaki, H.: A Polynomial Time Algorithm for Bounded Directed Pathwidth. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagamochi, H. (2012). Submodular Minimization via Pathwidth. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics