Skip to main content

Probabilistic Connection between Cross-Validation and Vapnik Bounds

  • Conference paper
Agents and Artificial Intelligence (ICAART 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 271))

Included in the following conference series:

  • 948 Accesses

Abstract

In the paper we analyze a connection between outcomes of the cross-validation procedure and Vapnik bounds [1,2] on generalization of learning machines. We do not focus on how well the measured cross-validation outcome estimates the generalization error or how far it is from the training error; instead, we want to make statements about the cross-validation result without actually measuring it. In particular we want to state probabilistically what ε-difference one can expect between the known Vapnik bound and the unknown cross-validation result for given conditions of the experiment. In the consequence, we are able to calculate the necessary size of the training sample, so that the ε is sufficiently small; and so that the optimal complexity indicated via SRM is acceptable in the sense that cross-validation, if performed, would probably indicate the same complexity. We consider a non-stratified variant of cross-validation, which is convenient for the main theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  2. Vapnik, V.: Statistical Learning Theory: Inference from Small Samples. Wiley, New York (1995)

    Google Scholar 

  3. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Information Science & Statistics. Springer, US (2006)

    Google Scholar 

  4. Cherkassky, V., Mulier, F.: Learning from data. John Wiley & Sons, Inc. (1998)

    Google Scholar 

  5. Hellman, M., Raviv, J.: Probability of error, equivocation and the chernoff bound. IEEE Transactions on Information Theory IT-16, 368–372 (1970)

    Article  MathSciNet  Google Scholar 

  6. Schmidt, J., Siegel, A., Srinivasan, A.: Chernoff-hoeffding bounds for applications with limited independence. SIAM Journal on Discrete Mathematics 8, 223–250 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shawe-Taylor, J., et al.: A framework for structural risk minimization. In: COLT, pp. 68–76 (1996)

    Google Scholar 

  8. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer Verlag, New York, Inc. (1996)

    Google Scholar 

  9. Anthony, M., Shawe-Taylor, J.: A result of vapnik with applications. Discrete Applied Mathematics 47, 207–217 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krzyżak, A., et al.: Application of structural risk minimization to multivariate smoothing spline regression estimates. Bernoulli 8, 475–489 (2000)

    Google Scholar 

  11. Holden, S.: Cross-validation and the pac learning model. Technical Report RN/96/64, Dept. of CS, University College, London (1996)

    Google Scholar 

  12. Holden, S.: Pac-like upper bounds for the sample complexity of leave-one-out cross-validation. In: 9th Annual ACM Workshop on Computational Learning Theory, pp. 41–50 (1996)

    Google Scholar 

  13. Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Computation 11, 1427–1453 (1999)

    Article  Google Scholar 

  14. Kearns, M.: A bound on the error of cross-validation, with consequences for the training-test split. In: Advances in Neural Information Processing Systems, vol. 8. MIT Press (1995)

    Google Scholar 

  15. Kearns, M.: An experimental and theoretical comparison of model selection methods. In: 8th Annual ACM Workshop on Computational Learning Theory, pp. 21–30 (1995)

    Google Scholar 

  16. Bartlett, P., Kulkarni, S., Posner, S.: Covering numbers for real-valued function classes. IEEE Transactions on Information Theory 47, 1721–1724 (1997)

    Article  MathSciNet  Google Scholar 

  17. Bartlett, P.: The sample complexity of pattern classification with neural networks: the size of weights is more important then the size of the network. IEEE Transactions on Information Theory 44 (1997)

    Google Scholar 

  18. Ng, A.: Feature selection, l1 vs. l2 regularization, and rotational invariance. In: 21st ACM International Conference on Machine Learning. Proceeding Series, vol. 69 (2004)

    Google Scholar 

  19. Vapnik, V., Chervonenkis, A.: The necessary and sufficient conditions for the consistency of the method of empirical risk minimization. Yearbook of the Academy of Sciences of the USSR on Recognition, Classification and Forecasting 2, 217–249 (1989)

    Google Scholar 

  20. Kohavi, R.: A study of cross-validation and boostrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, IJCAI (1995)

    Google Scholar 

  21. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  22. Hjorth, J.: Computer Intensive Statistical Methods Validation, Model Selection, and Bootstrap. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  23. Weiss, S., Kulikowski, C.: Computer Systems That Learn. Morgan Kaufmann (1991)

    Google Scholar 

  24. Fu, W., Caroll, R., Wang, S.: Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21, 1979–1986 (2005)

    Article  Google Scholar 

  25. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Dokl. Aka. Nauk. 181 (1968)

    Google Scholar 

  26. Korzeń, M., Klęsk, P.: Maximal Margin Estimation with Perceptron-like Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 597–608. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klęsk, P. (2013). Probabilistic Connection between Cross-Validation and Vapnik Bounds. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2011. Communications in Computer and Information Science, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29966-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29966-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29965-0

  • Online ISBN: 978-3-642-29966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics