Abstract
Rank aggregation refers to the task of combining different orderings of an identical set of objects to obtain a consensus ranked list. Other than meta-search in web mining, in last few years, this technique has successfully been employed to address problems arising from bioinformatics domain. Consensus ranking of disease related genes, miRNA targets are ample examples in this context. It can be argued that scores are more informative than mere ranks. Existing score based aggregation techniques are evolutionary in nature and consume significant amount of time. We, for the first time propose a Markov chain for score based aggregation ranked lists. The proposed method is found out-performing the existing methods in terms of time consumption (by far) and performance when used in context of microRNA (miRNA) target ranking. The supplementary materials are uploaded at: http://www.isical.ac.in/~bioinfo_miu/rankfuse.rar
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web. In: Proc. 10th International World Wide Web Conference, pp. 613–620 (2001)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal of Discrete Mathematics 7, 134–160 (2003)
Pihur, V., Datta, S., Datta, S.: RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics (2009)
Lin, S., Ding, J.: Integration of Ranked Lists via Cross Entropy Monte Carlo with Applications to mRNA and miRNA Studies. Biometrics (2008), doi:10.1111/j.1541-0420.2008.01044.x
Pihur, V., Datta, S., Datta, S.: Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics 23(13), 1607–1615 (2007)
Pihur, V., Datta, S., Datta, S.: Finding cancer genes through meta-analysis of microarray experiments: Rank aggregation via the cross entropy algorithm. Genomics 92, 400–403 (2008)
DeConde, R., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., Etzioni, R.: Combining results of microarrayexperiments: a rank aggregation approach. Proc. Stat. Appl. Genet. Mol. Biol. 5, Article15 (2006)
Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial microRNA target predictions. Nature Genetics 37, 495–500 (2005)
John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., Marks, D.S.: Human microRNA targets. PLOS Biology 2, 1862–1879 (2004)
Zhou, J., Lin, S., Melfi, V., Verducci, J.: Composite MicroRNA target predictions and comparisons of several prediction algorithms. MBI Technical Report, No. 51 (2006)
Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)
Goldenberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)
Chan, J.A., Krichevsky, A.M., et al.: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)
Esquela-Kerscher, A., Slack, F.J.: Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)
Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. cell 116(2), 281–297 (2004)
Kertesz, M., Iovino, N., et al.: The role of site accessibility in microRNA target recognition. Nat. Gen. (2007), doi:10.1038/ng2135
Sethupathy, P., Megraw, M., Hatzigeorgiou, A.G.: A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods (2006), doi:10.1038/NMETH954
Truchon, M.: An extension of the Condorcet criterion and Kemeny orders. cahier 98-15 du Centre de Recherche en Economie et Finance Appliquees (1998)
Young, H.P.: Condorcet’s theory of Voting. Amer. Political Sci. Review 82, 1231–1244 (1988)
Young, H.P., Levenglick, A.: A consistent extension of Condorcet’s election principle. SIAM J. on Applied Math. 35(2), 285–300 (1978)
Bandyopadhyay, S., Mitra, R.: Targetminer: MicroRNA Target Prediction with Systematic Identification Of Tissue Specific Negative Examples. Bioinformatics (2009), doi:10.1093/bioinformatics/btp503
Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., Li, T.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37, D105–D110 (2009)
Sengupta, D., et al.: A novel measure for evaluating an ordered list: application in microRNA target prediction. In: ISB 2010, India (2010), ISBN:978-1-60558-722-6, http://doi.acm.org/10.1145/1722024.1722067
Grazia, A.D.: Mathematical Derivation of an Election System. Isis 44 (1953)
Rehmsmeier, M., Steffen, P., Höchsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)
Sengupta, D., Maulik, U., Bandyoapdhyay, S.: Weighted Markov Chain Based Aggregation of Bio-molecule Orderings. IEEE-TCBB (2012), doi:10.1109/TCBB.2012.28
Sengupta, D., Bandyoapdhyay, S.: Participation of microRNAs in human interactome: extraction of microRNA microRNA regulations. Molecular Biosystems (2011), doi:10.1039/C0MB00347F
Sengupta, D., Maulik, U., Bandyoapdhyay, S.: Entropy steered Kendall’s tau measure for a fair Rank Aggregation. NCEATCS (2011), doi:10.1109/NCETACS.2011.5751397
Chen, J., Aronow, B.J., Jegga, A.G.: Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics (2009), doi:10.1039/C0MB00347F, doi:10.1186/1471-2105-10-73
Rank Aggregation Methods for the Web, www.cs.uc.edu/~annexste/Courses/cs728-2008/Lecture11.ppt
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sengupta, D., Maulik, U., Bandyopadhyay, S. (2012). Score Based Aggregation of microRNA Target Orderings. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-30191-9_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30190-2
Online ISBN: 978-3-642-30191-9
eBook Packages: Computer ScienceComputer Science (R0)