Skip to main content

A Polynomial Time Solution for Protein Chain Pair Simplification under the Discrete Fréchet Distance

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7292))

Included in the following conference series:

Abstract

The comparison and simplification of polygonal chains is an important and active topic in many areas of research. In the study of protein structure alignment and comparison, a lot of work has been done using RMSD as the distance measure. This method has certain drawbacks, and thus recently, the discrete Fréchet distance was applied to the problem of protein (backbone) structure alignment and comparison with promising results. Another important area within protein structure research is visualization, due to the number of nodes along each backbone. Protein chain backbones can have as many as 500~600 α-carbon atoms which constitute the vertices in the comparison. Even with an excellent alignment, the similarity of two polygonal chains can be very difficult to see visually unless the two chains are nearly identical. To address this issue, the chain pair simplification problem (CPS-3F) was proposed in 2008 to simultaneously simplify both chains with respect to each other under the discrete Fréchet distance. It is unknown whether CPS-3F is NP-complete, and so heuristic methods have been developed. Here, we first define a version of CPS-3F, denoted CPS-3F + , and prove that it is polynomially solvable by presenting a dynamic programming solution. Then we compare the CPS-3F +  solutions with previous empirical results, and further demonstrate some of the benefits of the simplified comparison. Finally, we discuss future work and implications along with a web-based software implementation, named FPACT (The Fréchet-based Protein Alignment & Comparison Tool), allowing users to align, simplify, and compare protein backbone chains using methods based on the discrete Fréchet distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes (extended abstract). In: Proceedings of the 7th Annual Symposium on Computational Geometry (SoCG 1991), pp. 186–193 (1991)

    Google Scholar 

  2. Alt, H., Godau, M.: Measuring the resemblance of polygonal curves. In: Proceedings of the 8th Annual Symposium on Computational Geometry (SoCG 1992), pp. 102–109 (1992)

    Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, H., Knauer, C., Wenk, C.: Matching Polygonal Curves with Respect to the Fréchet Distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet Distance for Curves, Revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 52–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Bereg, S., Jiang, M., Wang, W., Yang, B., Zhu, B.: Simplifying 3D Polygonal Chains Under the Discrete Fréchet Distance. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 630–641. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34, 200–208 (1987)

    Article  Google Scholar 

  8. Conte, L., Ailey, B., Hubbard, T., Brenner, S., Murzin, A., Chothia, C.: SCOP: a structural classification of protein database. Nucleic Acids Research 28, 257–259 (2000)

    Article  Google Scholar 

  9. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. Report CD-TR 94/64, Information Systems Department, Technical University of Vienna (1994)

    Google Scholar 

  10. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico di Palermo 22, 1–74 (1906)

    Article  Google Scholar 

  11. Holm, L., Park, J.: DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000)

    Article  Google Scholar 

  12. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  13. Jiang, M., Xu, Y., Zhu, B.: Protein structure-structure alignment with discrete Fréchet distance. J. of Bioinformatics and Computational Biology 6, 51–64 (2008)

    Article  Google Scholar 

  14. Mauzy, C., Hermodson, M.: Structural homology between rbs repressor and ribose binding protein implies functional similarity. Protein Science 1, 843–849 (1992)

    Article  Google Scholar 

  15. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)

    Article  Google Scholar 

  16. Orengo, C., Michie, A., Jones, S., Jones, D., Swindles, M., Thornton, J.: CATH—a hierarchic classification of protein domain structures. Structure, 5, 1093–1108 (1997)

    Article  Google Scholar 

  17. Oritz, A., Strauss, C., Olmea, O.: MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Science 11, 2606–2621 (2002)

    Article  Google Scholar 

  18. Shindyalov, I., Bourne, P.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering 11, 739–747 (1998)

    Article  Google Scholar 

  19. Shyu, C.-R., Chi, P.-H., Scott, G., Xu, D.: ProteinDBS: a real-time retrieval system for protein structure comparison. Nucleic Acids Research 32, W572–W575 (2004)

    Article  Google Scholar 

  20. Taylor, W., Orengo, C.: Protein structure alignment. J. Mol. Biol. 208, 1–22 (1989)

    Article  Google Scholar 

  21. Wenk, C.: Shape Matching in Higher Dimensions. PhD thesis, Freie Universitaet Berlin (2002)

    Google Scholar 

  22. Wylie, T., Luo, J., Zhu, B.: A Practical Solution for Aligning and Simplifying Pairs of Protein Backbones under the Discrete Fréchet Distance. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 74–83. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Wylie, T.: FPACT: The Fréchet-based Protein Alignment & Comparison Tool (2012), http://www.cs.montana.edu/~timothy.wylie/frechet

  24. Yang, J.-M., Tung, C.-H.: Protein structure database search and evolutionary classification. Nucleic Acids Research 34, 3646–3659 (2006)

    Article  Google Scholar 

  25. Zhu, B.: Protein local structure alignment under the discrete Fréchet distance. J. Computational Biology 14(10), 1343–1351 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wylie, T., Zhu, B. (2012). A Polynomial Time Solution for Protein Chain Pair Simplification under the Discrete Fréchet Distance. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30191-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30190-2

  • Online ISBN: 978-3-642-30191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics