Skip to main content

SRF: A Framework for the Study of Classifier Behavior under Training Set Mislabeling Noise

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7301))

Included in the following conference series:

Abstract

Machine learning algorithms perform differently in settings with varying levels of training set mislabeling noise. Therefore, the choice of a good algorithm for a particular learning problem is crucial. In this paper, we introduce the “Sigmoid Rule” Framework focusing on the description of classifier behavior in noisy settings. The framework uses an existing model of the expected performance of learning algorithms as a sigmoid function of the signal-to-noise ratio in the training instances. We study the parameters of the above sigmoid function using five different classifiers, namely, Naive Bayes, kNN, SVM, a decision tree classifier, and a rule-based classifier. Our study leads to the definition of intuitive criteria based on the sigmoid parameters that can be used to compare the behavior of learning algorithms in the presence of varying levels of noise. Furthermore, we show that there exists a connection between these parameters and the characteristics of the underlying dataset, hinting at how the inherent properties of a dataset affect learning. The framework is applicable to concept drift scenaria, including modeling user behavior over time, and mining of noisy data series, as in sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Applied Soft Computing 6(2), 119–138 (2006)

    Article  Google Scholar 

  2. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  3. Camastra, F., Vinciarelli, A.: Estimating the intrinsic dimension of data with a fractal-based method. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(10), 1404–1407 (2002)

    Article  Google Scholar 

  4. Chevaleyre, Y., Zucker, J.-D.: Noise-tolerant rule induction from multi-instance data. In: De Raedt, L. (ed.) Proceedings of the ICML 2000 Workshop on Attribute-Value and Relational Learning: Crossing the Boundaries (2000)

    Google Scholar 

  5. Cohen, W.W.: Fast effective rule induction. In: ICML (1995)

    Google Scholar 

  6. de Sousa, E., Traina, A., Traina Jr., C., Faloutsos, C.: Evaluating the intrinsic dimension of evolving data streams. In: Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 643–648. ACM (2006)

    Google Scholar 

  7. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  8. Giannakopoulos, G., Palpanas, T.: Adaptivity in entity subscription services. In: ADAPTIVE (2009)

    Google Scholar 

  9. Giannakopoulos, G., Palpanas, T.: Content and type as orthogonal modeling features: a study on user interest awareness in entity subscription services. International Journal of Advances on Networks and Services 3(2) (2010)

    Google Scholar 

  10. Giannakopoulos, G., Palpanas, T.: The effect of history on modeling systems’ performance: The problem of the demanding lord. In: ICDM (2010)

    Google Scholar 

  11. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Machine Learning 54(3), 187–193 (2004)

    Article  Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann (2006)

    Google Scholar 

  14. Kalapanidas, E., Avouris, N., Craciun, M., Neagu, D.: Machine learning algorithms: a study on noise sensitivity. In: Proc. 1st Balcan Conference in Informatics, pp. 356–365 (2003)

    Google Scholar 

  15. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to platt’s smo algorithm for svm classifier design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  16. Kuh, A., Petsche, T., Rivest, R.L.: Learning time-varying concepts. In: NIPS, pp. 183–189 (1990)

    Google Scholar 

  17. Li, Q., Li, T., Zhu, S., Kambhamettu, C.: Improving medical/biological data classification performance by wavelet preprocessing. In: Proceedings ICDM Conference (2002)

    Google Scholar 

  18. Pendrith, M., Sammut, C.: On reinforcement learning of control actions in noisy and non-markovian domains. Technical report, School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia (1994)

    Google Scholar 

  19. Teytaud, O.: Learning with noise. Extension to regression. In: Proceedings of International Joint Conference on Neural Networks, IJCNN 2001, vol. 3, pp. 1787–1792. IEEE (2002)

    Google Scholar 

  20. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (2003)

    Google Scholar 

  21. Wolpert, D.: The existence of a priori distinctions between learning algorithms. Neural Computation 8, 1391–1421 (1996)

    Article  Google Scholar 

  22. Wolpert, D.: The supervised learning no-free-lunch theorems. In: Proc. 6th Online World Conference on Soft Computing in Industrial Applications. Citeseer (2001)

    Google Scholar 

  23. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Computation 8, 1341–1390 (1996)

    Article  Google Scholar 

  24. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.F.M., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirylenka, K., Giannakopoulos, G., Palpanas, T. (2012). SRF: A Framework for the Study of Classifier Behavior under Training Set Mislabeling Noise. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30217-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30217-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30216-9

  • Online ISBN: 978-3-642-30217-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics