Skip to main content

A Vertex Similarity Probability Model for Finding Network Community Structure

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7301))

Included in the following conference series:

Abstract

Most methods for finding community structure are based on the prior knowledge of network structure type. These methods grouped the communities only when known network is unipartite or bipartite. This paper presents a vertex similarity probability (VSP) model which can find community structure without priori knowledge of network structure type. Vertex similarity, which assumes that, for any type of network structures, vertices in the same community have similar properties. In the VSP model, “Common neighbor index” is used to measure the vertex similarity probability, as it has been proved to be an effective index for vertex similarity. We apply the algorithm to real-world network data. The results show that the VSP model is uniform for both unipartite networks and bipartite networks, and it is able to find the community structure successfully without the use of the network structure type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wasserman, S., Faust, K.: Social Networks Analysis. Cambridge University Pres, Cambridge (1994)

    Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports-Review Section of Physics Letters 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Lu, L.Y., Zhou, T.: Link prediction in complex networks: A survey. Physica a-Statistical Mechanics and Its Applications 390, 1150–1170 (2011)

    Article  MathSciNet  Google Scholar 

  4. Boguna, M., Krioukov, D., Claffy, K.C.: Navigability of complex networks. Nature Physics 5, 74–80 (2009)

    Article  Google Scholar 

  5. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17, 734–749 (2005)

    Article  Google Scholar 

  6. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America 100, 12123–12128 (2003)

    Article  Google Scholar 

  7. Chen, J.C., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22, 2283–2290 (2006)

    Article  Google Scholar 

  8. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35, 66–71 (2002)

    Article  Google Scholar 

  9. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities in the web. In: Proceedings of the 16th International Conference on the World Wide Web, pp. 461–470. ACM, New York (2007)

    Chapter  Google Scholar 

  10. Moody, J., White, D.R.: Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review 68, 103–127 (2003)

    Article  Google Scholar 

  11. Wellman, B.: The development of social network analysis: A study in the sociology of science. Contemporary Sociology-a Journal of Reviews 37, 221–222 (2008)

    Article  Google Scholar 

  12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69 (2004)

    Google Scholar 

  13. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74 (2006)

    Google Scholar 

  14. Barber, M.J.: Modularity and community detection in bipartite networks. Physical Review E 76 (2007)

    Google Scholar 

  15. Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels under constraints. Physical Review E 80 (2009)

    Google Scholar 

  16. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)

    Article  Google Scholar 

  17. Guimera, R., Sales-Pardo, M.: Missing and spurious interactions and the reconstruction of complex networks. Proceedings of the National Academy of Sciences of the United States of America 106, 22073–22078 (2009)

    Article  Google Scholar 

  18. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Physical Review E 83 (2011)

    Google Scholar 

  19. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holme, P., Huss, M., Jeong, H.W.: Subnetwork hierarchies of biochemical pathways. Bioinformatics 19, 532–538 (2003)

    Article  Google Scholar 

  21. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences of the United States of America 104, 7327–7331 (2007)

    Article  Google Scholar 

  22. Chuma, J., Molyneux, C.: Coping with the costs of illness: The role of shops and shopkeepers as social networks in a low-income community in coastal kenya. Journal of International Development 21, 252–270 (2009)

    Article  Google Scholar 

  23. Li, F., Long, T., Lu, Y., Quyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. PNAS 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  24. Bascompte, J., Jordano, P., Melian, C.J., Olesen, J.M.: The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America 100, 9383–9387 (2003)

    Article  Google Scholar 

  25. Guimera, R., Uzzi, B., Spiro, J., Amaral, L.A.N.: Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005)

    Article  Google Scholar 

  26. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Physical Review E 73 (2006)

    Google Scholar 

  27. Salton, G., McGill, M.J.: Introduction to modern information retrieval. MuGraw-Hill, Auckland (1983)

    MATH  Google Scholar 

  28. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Science Naturelles 44, 223–270 (1908)

    Google Scholar 

  29. Sφrensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Det Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter 5(4), 1–34 (1948)

    Google Scholar 

  30. Salton, G.: Automatic text processing: The transformation, analysis, and retrieval of information by computer. Addison-Wesley, Boston (1989)

    Google Scholar 

  31. Adamic, L.A., Adar, E.: Friends and neighbors on the Web. Social Networks 25, 211–230 (2003)

    Article  Google Scholar 

  32. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58, 1019–1031 (2007)

    Article  Google Scholar 

  33. Zhou, T., Lu, L.Y., Zhang, Y.C.: Predicting missing links via local information. European Physical Journal B 71, 623–630 (2009)

    Article  MATH  Google Scholar 

  34. Pajek: http://vlado.fmf.uni-lj.si/pub/networks/pajek

  35. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations - Can geographic isolation explain this unique trait? Behavioral Ecology and Sociobiology 54, 396–405 (2003)

    Article  Google Scholar 

  36. Davis, A., Gardner, B.B., Gardner, M.R.: Deep South. University of Chicago Press (1941)

    Google Scholar 

  37. Scott, J., Hughes, M.: The anatomy of Scottish capital: Scottish companies and Scottish capital. Croom Helm, London (1980)

    Google Scholar 

  38. Danon, L., Diaz-Guilera, A., Arenas, A.: The effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics-Theory and Experiment, P11010 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, K., Pang, Y. (2012). A Vertex Similarity Probability Model for Finding Network Community Structure. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30217-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30217-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30216-9

  • Online ISBN: 978-3-642-30217-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics