Skip to main content

Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers

  • Chapter
Complex Networks

Abstract

We propose here to use network sciences, specifically an approach based on the Barabási-Albert model, to define a dynamic communication topology for Particle Swarm Optimizers. We compared our proposal to previous approaches, including a simpler Barabási-Albert-based approach and other most used approaches, and we obtained better results in average for well known benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002) doi:10.1103/RevModPhys.74.47

    Google Scholar 

  2. Barabasi, A.L.: Linked, 1st edn. Perseus Publishing (2002)

    Google Scholar 

  3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bastos-Filho, C., Andrade, J., Pita, M., Ramos, A.: Impact of the quality of random numbers generators on the performance of particle swarm optimization. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 4988–4993 (2009), doi:10.1109/ICSMC.2009.5346366

    Google Scholar 

  5. Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks. EPL (Europhysics Letters) 54(4), 436–442 (2001), http://dx.doi.org/10.1209/epl/i2001-00260-6 , doi:10.1209/epl/i2001-00260-6

    Article  Google Scholar 

  6. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: IEEE Swarm Intelligence Symposium, SIS 2007, pp. 120–127 (2007), doi:10.1109/SIS.2007.368035

    Google Scholar 

  7. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000), http://link.aps.org/doi/10.1103/PhysRevLett.85.5468 , doi:10.1103/PhysRevLett.85.5468

    Article  Google Scholar 

  8. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002), doi:10.1109/4235.985692

    Article  Google Scholar 

  9. Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000), http://link.aps.org/doi/10.1103/PhysRevLett.85.4626 , doi:10.1103/PhysRevLett.85.4626

    Article  Google Scholar 

  10. Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001), http://link.aps.org/doi/10.1103/PhysRevLett.86.3682 , doi:10.1103/PhysRevLett.86.3682

    Article  Google Scholar 

  11. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000), doi:10.1109/CEC.2000.870279

    Google Scholar 

  12. Ferreira de Carvalho, D., Bastos-Filho, C.J.A.: Clan particle swarm optimization. International Journal of Intelligent Computing and Cybernetics 2(2), 197–227 (2009), http://dx.doi.org/10.1108/17563780910959875 , doi:10.1108/17563780910959875

    Article  MathSciNet  MATH  Google Scholar 

  13. Godoy, A., Von Zuben, F.: A complex neighborhood based particle swarm optimization. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 720–727 (2009), doi:10.1109/CEC.2009.4983016

    Google Scholar 

  14. Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, E. (ed.) The Ubiquity of Chaos, pp. 233–238. AAAS Publications (1990)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization, vol. 4, pp. 1942–1948 (1995), http://dx.doi.org/10.1109/ICNN.1995.488968 , doi:10.1109/ICNN.1995.488968

  16. Kennedy, J., Mendes, R.: Population structure and particle swarm performance, pp. 1671–1676 (2002), doi:10.1109/CEC.2002.1004493

    Google Scholar 

  17. Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)

    MATH  Google Scholar 

  18. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31(1), 64–68 (2002), http://dx.doi.org/10.1038/ng881 , doi:10.1038/ng881

    Article  Google Scholar 

  19. Watts, D.J.: Small worlds: The dynamics of networks between order and randomness. Princeton University Press, Princeton (1999)

    Google Scholar 

  20. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998), http://dx.doi.org/10.1038/30918 , doi:10.1038/30918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Junior, M.A.C.O., Bastos Filho, C.J.A., Menezes, R. (2013). Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers. In: Menezes, R., Evsukoff, A., González, M. (eds) Complex Networks. Studies in Computational Intelligence, vol 424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30287-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30287-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30286-2

  • Online ISBN: 978-3-642-30287-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics