Abstract
We propose here to use network sciences, specifically an approach based on the Barabási-Albert model, to define a dynamic communication topology for Particle Swarm Optimizers. We compared our proposal to previous approaches, including a simpler Barabási-Albert-based approach and other most used approaches, and we obtained better results in average for well known benchmark functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002) doi:10.1103/RevModPhys.74.47
Barabasi, A.L.: Linked, 1st edn. Perseus Publishing (2002)
Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Bastos-Filho, C., Andrade, J., Pita, M., Ramos, A.: Impact of the quality of random numbers generators on the performance of particle swarm optimization. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 4988–4993 (2009), doi:10.1109/ICSMC.2009.5346366
Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks. EPL (Europhysics Letters) 54(4), 436–442 (2001), http://dx.doi.org/10.1209/epl/i2001-00260-6 , doi:10.1209/epl/i2001-00260-6
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: IEEE Swarm Intelligence Symposium, SIS 2007, pp. 120–127 (2007), doi:10.1109/SIS.2007.368035
Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000), http://link.aps.org/doi/10.1103/PhysRevLett.85.5468 , doi:10.1103/PhysRevLett.85.5468
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002), doi:10.1109/4235.985692
Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000), http://link.aps.org/doi/10.1103/PhysRevLett.85.4626 , doi:10.1103/PhysRevLett.85.4626
Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001), http://link.aps.org/doi/10.1103/PhysRevLett.86.3682 , doi:10.1103/PhysRevLett.86.3682
Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000), doi:10.1109/CEC.2000.870279
Ferreira de Carvalho, D., Bastos-Filho, C.J.A.: Clan particle swarm optimization. International Journal of Intelligent Computing and Cybernetics 2(2), 197–227 (2009), http://dx.doi.org/10.1108/17563780910959875 , doi:10.1108/17563780910959875
Godoy, A., Von Zuben, F.: A complex neighborhood based particle swarm optimization. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 720–727 (2009), doi:10.1109/CEC.2009.4983016
Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, E. (ed.) The Ubiquity of Chaos, pp. 233–238. AAAS Publications (1990)
Kennedy, J., Eberhart, R.: Particle swarm optimization, vol. 4, pp. 1942–1948 (1995), http://dx.doi.org/10.1109/ICNN.1995.488968 , doi:10.1109/ICNN.1995.488968
Kennedy, J., Mendes, R.: Population structure and particle swarm performance, pp. 1671–1676 (2002), doi:10.1109/CEC.2002.1004493
Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)
Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31(1), 64–68 (2002), http://dx.doi.org/10.1038/ng881 , doi:10.1038/ng881
Watts, D.J.: Small worlds: The dynamics of networks between order and randomness. Princeton University Press, Princeton (1999)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998), http://dx.doi.org/10.1038/30918 , doi:10.1038/30918
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Junior, M.A.C.O., Bastos Filho, C.J.A., Menezes, R. (2013). Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers. In: Menezes, R., Evsukoff, A., González, M. (eds) Complex Networks. Studies in Computational Intelligence, vol 424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30287-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-30287-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30286-2
Online ISBN: 978-3-642-30287-9
eBook Packages: EngineeringEngineering (R0)