Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 43))

Abstract

In the chapter, we discuss classifiers based on rough set theory and nondeterministic decision rules. We used two kinds of nondeterministic rules called the first and second type. These rules have a few decision values but the rules of the second type can have on the left-hand side one generalized descriptor. i.e., a condition of the form a ∈ V, where V is a two-element subset of the attribute value set V a . We show that these kinds of rules can be used for improving the quality of classification and we propose classifications algorithms based on nondeterministic (first and second type) rules. These algorithms are using not only nondeterministic rules but also minimal rules in the sense of rough sets. In the chapter, these classifiers were tested on several data sets from the UCI Machine Learning Repository and the results were compared. The reported results of experiments show that the proposed classifiers based on nondeterministic rules can improve the classification quality but it requires tuning some of their parameters relative to analyzed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., May 26-28, pp. 207–216. ACM Press, New York (1993)

    Chapter  Google Scholar 

  2. Bazan, J.G., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the Evolution of Rough Set Exploration System. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Delimata, P., Marszał-Paszek, B., Moshkov, M., Paszek, P., Skowron, A., Suraj, Z.: Comparison of Some Classification Algorithms Based on Deterministic and Nondeterministic Decision Rules. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 90–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Frank, A., Asuncion, A.: UCI Machine Learning Repository, University of California, Irvine (2010), http://archive.ics.uci.edu/ml (cited September 1, 2011)

  5. Grzymała-Busse, J.W.: LERS — A Data Mining System. In: Maimon, O., Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 1347–1351. Springer, New York (2005)

    Chapter  Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD, Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  7. Marszał–Paszek, B., Paszek, P.: Minimal Templates and Knowledge Discovery. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 411–416. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Michalski Ryszard, http://www.mli.gmu.edu/michalski (cited September 1, 2011)

  9. Paszek, P., Marszał-Paszek, B.: Deterministic and Nondeterministic Decision Rules in Classification Process. Journal of Medical Informatics and Technologies 15, 87–92 (2010)

    Google Scholar 

  10. Pawlak, Z.: Rough Sets — Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  11. Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Information Sciences 177, 3–27 (2007); Rough Sets: Some Extensions. Information Sciences 177, 28–40 (2007); Rough Sets and Boolean Reasoning. Information Sciences 177, 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rissanen, J.: Modeling by Shortest Data Description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  13. Rosetta, http://www.lcb.uu.se/tools/rosetta (cited September 1, 2011)

  14. Rough Set Exploration System, http://logic.mimuw.edu.pl/~rses (cited September 1, 2011)

  15. Triantaphyllou, E., Felici, G. (eds.): Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Springer Science and Business Media, LLC (2006)

    MATH  Google Scholar 

  16. Tsumoto, S.: Modelling Medical Diagnostic Rules Based on Rough Sets. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 475–482. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Marszał-Paszek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marszał-Paszek, B., Paszek, P. (2013). Classifiers Based on Nondeterministic Decision Rules. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30341-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30341-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30340-1

  • Online ISBN: 978-3-642-30341-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics