Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 43))

Abstract

It has been almost exactly 10 years since the publication of the Neurocomputing Special Volume on Rough-Neuro Computing, and nearly 8 years since the seminal book “Rough-Neural Computing” came out. Rough-Neuro (or Neural) Computing (RNC) generalizes traditional artificial neural networks by incorporating the concepts of information granularity and computing with words. It provides solid theoretical foundations for hybridization of neural computing with the theory of rough sets, as well as rough mereology, and has many interesting practical applications. Interestingly, while the RNC paradigms directly or indirectly draw extensively from the field of neuroscience, not many applications of the theory of rough sets (in the form of RNC or otherwise) to solve problems in that field exist. This is somewhat surprising as many problems in neuroscience are inherently vague and/or ill-defined and could potentially significantly benefit from the rough sets’ ability to deal with imprecise data, and those applications that have been proposed, have been very successful. In this chapter, we describe a few examples of the existing applications of the theory of rough sets (and its hybridizations) in the field of neuroscience and its clinical “sister,” neurology. We also provide a discussion of other potential applications of rough sets in those areas. Finally, we speculate on how the new insights into the field of neuroscience derived with the help of rough sets may help improve RNC, thus closing the loop between the two fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.F.: Lapique’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin 50(5/6), 303–304 (1999)

    Article  Google Scholar 

  2. Blume, W., Lüders, H., Mizrahi, E., Tassinari, C., van Emde Boas, W., Engel, J.: Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 42(9), 1212–1218 (2001)

    Article  Google Scholar 

  3. Breedlove, M., Watson, N.V., Rosenzweig, M.R.: Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience, 5th edn. Sinauer Associates, Inc. (2007)

    Google Scholar 

  4. Czyzewski, A.: Intelligent acquisition of audio signals employing neural networks and rough sets algotithms. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 521–542. Springer, Heidelberg (2003)

    Google Scholar 

  5. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press (2001)

    Google Scholar 

  6. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proc. 12th International Conference on Machine Learning, Tahoe City, CA, pp. 194–202 (1995)

    Google Scholar 

  7. Fee, M.S., Mitra, P.P., Kleinfeld, D.: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175–188 (1996)

    Article  Google Scholar 

  8. Flury, B.: Common Principal Components and Related Multivariate Models. John Wiley & Sons (1988)

    Google Scholar 

  9. Günay, C., et al.: Computational Intelligence in Electrophysiology: Trends and Open Problems. SCI, vol. 122, pp. 325–359 (2008)

    Google Scholar 

  10. Günay, C., Prinz, A.A.: Model calcium sensors for network homeostasis: Sensor and readout parameter analysis from a database of model neuronal networks. J. Neuroscience 30(5), 1686–1698 (2010)

    Article  Google Scholar 

  11. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  12. Hyvarinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  13. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. of Computer and System Sciences 9, 256–278 (1974)

    Article  MATH  Google Scholar 

  14. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill (2000)

    Google Scholar 

  15. Khorkova, O., Golowasch, J.: Neuromodulators, not activity, control coordinated expression of ionic currents. J. Neuroscience 27(32), 8709–8718 (2007)

    Article  Google Scholar 

  16. Kimble, D.P.: Biological Psychology. Holt, Rinehart, and Winston, Inc. (1988)

    Google Scholar 

  17. Kobashi, S., Kondo, K., Hata, Y.: Rough sets based medical image segmentation with connectedness. In: Proc. 5th Int. Forum on Multimedia and Image Processing, pp. 197–202 (2004)

    Google Scholar 

  18. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98 (1999)

    Google Scholar 

  19. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  20. Laumanns, M., Zitzler, E., Thiele, L.: A unified model for multi-objective evolutionary algorithms with elitism. In: Proc. Congress on Evolutionary Computation, pp. 46–53 (2000)

    Google Scholar 

  21. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural Network Classification and Prior Class Probabilities. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 299–314. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Marder, E., Goaillard, J.M.: Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7(7), 563–574 (2006)

    Article  Google Scholar 

  23. Marek, W., Pawlak, Z.: Rough Sets and Information Systems. Fundamenta Informaticae 17, 105–115 (1984)

    MathSciNet  Google Scholar 

  24. Milanova, M.G., Smolinski, T.G., Boratyn, G.M., Żurada, J.M., Wrobel, A.: Sparse Correlation Kernel Analysis and Evolutionary Algorithm-Based Modeling of the Sensory Activity within the Rat’s Barrel Cortex. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 198–212. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Miller, J.P., Selverston, A.I.: Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. J. Neurophysiology 48(6), 1378–1391 (1982)

    Google Scholar 

  26. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  27. Øhrn A.: ROSETTA Technical Reference Manual (2001) (retrieved May 6, 2011), http://www.lcb.uu.se/tools/rosetta/materials/manual.pdf

  28. Pal, S.K, Pedrycz, W., Skowron, A., Swiniarski, R. (eds.): Special Volume: Rough-neuro Computing. Neurocomputing 36 (2001)

    Google Scholar 

  29. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing. Springer (2003)

    Google Scholar 

  30. Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29, 27–39 (1984)

    Article  MathSciNet  Google Scholar 

  31. Pawlak, Z.: Rough Sets. International J. of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pawlak, Z.: Rough sets - Theoretical aspects of reasoning about data. Kluwer (1991)

    Google Scholar 

  33. Peters, J.F., Skowron, A., Han, L., Ramanna, S.: Towards Rough Neural Computing Based on Rough Membership Functions: Theory and Application. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 611–618. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  34. Polkowski, L., Skowron, A.: Rough-Neuro Computing. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 57–64. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  35. Prinz, A.A., Abbott, L.F., Marder, E.: The Dynamic Clamp Comes of Age. Trends in Neuroscience 27, 218–224 (2004)

    Article  Google Scholar 

  36. Przybyszewski, A.W.: The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 287–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  37. Ropper, A., Samuels, M.: Adams and Victor’s Principles of Neurology, 9th edn. McGraw-Hill Professional (2009)

    Google Scholar 

  38. Schulz, D.J., Goaillard, J.-M., Marder, E.: Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. PNAS 104(32), 13187–13191 (2007)

    Article  Google Scholar 

  39. Selverston, A.I., Miller, J.P.: Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system. J. Neurophysiology 44(6), 1102–1121 (1980)

    Google Scholar 

  40. Simon, R., Greenberg, D., Aminoff, M.: Clinical Neurology, 7th edn. McGraw-Hill Professional (2009)

    Google Scholar 

  41. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Smolinski, T.G., Boratyn, G.M., Milanova, M.G., Żurada, J.M., Wrobel, A.: Evolutionary Algorithms and Rough Sets-Based Hybrid Approach to Classificatory Decomposition of Cortical Evoked Potentials. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 621–628. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  43. Smolinski, T.G., Chenoweth, D.L., Zurada, J.M.: Time Series Prediction Using Rough Sets and Neural Networks Hybrid Approach. In: Castillo, O. (ed.) Proc. IASTED International Conference on Neural Networks and Computational Intelligence (NCI 2003), pp. 108–111 (2003)

    Google Scholar 

  44. Smolinski, T.G.: Classificatory Decomposition for Time Series Classification and Clustering. PhD thesis, Univ. of Louisville, Louisville (2004)

    Google Scholar 

  45. Smolinski, T.G., Milanova, M.G., Boratyn, G.M., Buchanan, R., Prinz, A.A.: Multi-Objective Evolutionary Algorithms and Rough Sets for Decomposition and Analysis of Cortical Evoked Potentials. In: Proc. IEEE International Conference on Granular Computing (GrC 2006), pp. 635–638 (2006)

    Google Scholar 

  46. Smolinski, T.G., Boratyn, G.M., Milanova, M.G., Buchanan, R., Prinz, A.A.: Hybridization of Independent Component Analysis, Rough Sets, and Multi-Objective Evolutionary Algorithms for Classificatory Decomposition of Cortical Evoked Potentials. In: Rajapakse, J.C., Wong, L., Acharya, R. (eds.) PRIB 2006. LNCS (LNBI), vol. 4146, pp. 174–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  47. Smolinski, T.G., Soto-Treviño, C., Rabbah, P., Nadim, F., Prinz, A.A.: Analysis of biological neurons via modeling and rule mining. International J. of Information Technology and Intelligent Computing 1(2), 293–302 (2006)

    Google Scholar 

  48. Smolinski, T.G., Soto-Treviño, C., Rabbah, P., Nadim, F., Prinz, A.A.: Computational exploration of a multi-compartment model of the AB neuron in the lobster pyloric pacemaker kernel. BMC Neuroscience 9(suppl. 1), P53 (2008)

    Article  Google Scholar 

  49. Smolinski, T.G., Prinz, A.A.: Rough Sets for Solving Classification Problems in Computational Neuroscience. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 620–629. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  50. Soto-Treviño, C., Rabbah, P., Marder, E., Nadim, F.: Computational model of electrically coupled, intrinsically distinct pacemaker neurons. J. Neurophysiology 94(2), 590–604 (2005)

    Article  Google Scholar 

  51. Sulaiman, S., Shamsuddin, S.M., Abraham, A.: Rough Neuro-PSO Web Caching and XML Prefetching for Accessing Facebook from Mobile Environment. In: Proc. 8th International Conference on Computer Information Systems and Industrial Management (CISIM 2009), pp. 884–889. IEEE Computer Society Press (2009)

    Google Scholar 

  52. Szczuka, M., Wojdyłło, P.: Neuro-Wavelet Classifiers for EEG Signals Based on Rough Set Methods. In: Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R. (eds.) Special Volume: Rough-neuro Computing. Neurocomputing, vol. 36, pp. 103–122 (2001)

    Google Scholar 

  53. Tsumoto, S.: Computational Analysis of Acquired Dyslexia of Kanji Characters Based on Conventional and Rough Neural Networks. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 637–648. Springer, Heidelberg (2003)

    Google Scholar 

  54. Tulinius, M.H., Holme, E., Kristianson, B.: Mitochondrial encephalomyopathies in childhood: 1. Biochemical and morphologic investigations. J. Pediatrics 119, 242–250 (1991)

    Article  Google Scholar 

  55. Tulinius, M.H., Holme, E., Kristianson, B.: Mitochondrial encephalomyopathies in childhood: 2. Clinical manifestation and syndromes. J. Pediatrics 119, 251–259 (1991)

    Article  Google Scholar 

  56. Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates. International J. of Approximate Reasoning 25(2), 123–143 (2000)

    Article  MATH  Google Scholar 

  57. Wakulicz-Deja, A., Paszek, P.: Applying rough set theory to multi stage medical diagnosing. Fundamenta Informaticae 54(4), 387–408 (2003)

    MathSciNet  MATH  Google Scholar 

  58. Widz, S., Revett, K., Ślęzak, D.: Application of rough set based dynamic parameter optimization to MRI segmentation. In: Proc. 23rd Int. Conference of the North American Fuzzy Information Processing Society, pp. 440–445 (2004)

    Google Scholar 

  59. Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: Proc. 2nd Annual Joint Conference on Information Sciences, pp. 186–189 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz G. Smolinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smolinski, T.G., Prinz, A.A. (2013). Rough Sets and Neuroscience. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30341-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30341-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30340-1

  • Online ISBN: 978-3-642-30341-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics