Abstract
The paradigm of granular rough computing has risen quite recently — was initiated by Professor Lotfi Zadeh in 1979. This paradigm is strictly connected with the Rough Set Theory, which was proposed by Professor Zdzisław Pawlak in 1982. Granular rough computing is a paradigm in which one deals with granules that are aggregates of objects connected together by some form of similarity. In the rough set theory granules are traditionally defined as indiscernibility classes, where as similarity relations we use rough inclusions. Granules have a really wide spectrum of application, starting from an approximation of decision systems and ending with an application to the classification process. In this article, approximation methods are shown in the framework of Rough Set Theory. In this chapter we introduce both discrete and continuous granular methods known in the literatureas well as our own modifications along with a practical description of the application of these methods. For described here granulation methods, we have chosen suitable methods of classification which can work properly with shown algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, V.I.: On functions of three variables. Dokl. Akad. Nauk 114, 679–681 (1957); English transl., Amer. Math. Soc. Transl. 28, 51–54 (1963)
Artiemjew, P.: On strategies of knowledge granulation and applications to decision systems. PhD Dissertation, Polish Japanese Institute of Information Technology, L. Polkowski, Supervisor, Warsaw (2009)
Artiemjew, P.: Rough Mereological Classifiers Obtained from Weak Variants of Rough Inclusions. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 229–236. Springer, Heidelberg (2008)
Artiemjew, P.: On Classification of Data by Means of Rough Mereological Granules of Objects and Rules. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 221–228. Springer, Heidelberg (2008)
Artiemjew, P.: Natural versus Granular Computing: Classifiers from Granular Structures. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 150–159. Springer, Heidelberg (2008)
Artiemjew, P.: Classifiers from granulated data sets: Concept dependent and layered granulation. In: Proceedings RSKD 2007. Workshop at ECML/PKDD 2007, pp. 1–9. Warsaw University Press, Warsaw (2007)
Bocheński, J. M.: Die Zeitgenössischen Denkmethoden. A. Francke AG Verlag, Bern (Swiss Fed.) (1954)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
Kolmogorov, A.N.: Representation of functions of many variables. Dokl. Akad. Nauk 114, 953–956 (1957); English transl., Amer. Math. Soc. Transl. 17, 369–373 (1961)
Leśniewski, S.: Podstawy ogólnej teoryi mnogosci (On the foundations of set theory, in Polish). The Polish Scientific Circle, Moscow (1916); see also a later digest: Topoi 2, 7–52 (1982), and Foundations of the General Theory of Sets. I. In: Surma, S.J., Srzednicki, J., Barnett, D.I., Rickey, F.V. (eds.) S. Lesniewski. Collected Works, vol. 1, pp. 129-173. Kluwer, Dordrecht (1992)
Ling, C.-H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)
Marcus, S.: Tolerance rough sets, Cech topology, learning processes. Bulletin of the Polish Acad. Sci., Technical Sci. 42(3), 471–478 (1994)
Nieminen, J.: Rough tolerance equality. Fundamenta Informaticae 11, 289–294 (1988)
Pawlak, Z.: Rough sets. Int. J. Computer and Information Sci. 11, 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R.R., Fedrizzi, M., Kasprzyk, J. (eds.) Advances in the Dempster–Shafer Theory of Evidence, pp. 251–271. John Wiley and Sons, New York (1994)
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177(1), 28–40 (2007)
Poincare, H.: Science et Hypothese, Paris (1905)
Polkowski, L., Skowron, A., Żytkow, J.: Tolerance based rough sets. In: Lin, T.Y., Wildberger, M. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, pp. 55–58. Simulation Councils Inc., San Diego (1994)
Polkowski, L., Skowron, A.: Rough Mereology. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS (LNAI), vol. 869, pp. 85–94. Springer, Heidelberg (1994)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)
Polkowski, L.: A Rough Set Paradigm for Unifying Rough Set Theory and Fuzzy Set Theory (a plenary lecture). In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 70–78. Springer, Heidelberg (2003); cf. also Fundamenta Informaticae 54, 67–88 (2003)
Polkowski, L.: Toward Rough Set Foundations. Mereological Approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)
Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Proceedings of the 2006 IEEE Int. Conference on Granular Computing, GrC 2006, pp. 57–62. IEEE Computer Society Press (2006)
Polkowski, L.: Granulation of Knowledge in Decision Systems: The Approach Based on Rough Inclusions. The Method and Its Applications. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 69–79. Springer, Heidelberg (2007)
Polkowski, L.: The paradigm of granular rough computing. In: Proceedings of the 6th IEEE Intern. Conf. on Cognitive Informatics (ICCI 2007), pp. 145–163. IEEE Computer Society Press, Los Alamitos (2007)
Polkowski, L.: A unified approach to granulation of knowledge and granular computing based on rough mereology: A Survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–401. John Wiley & Sons, New York (2008)
Polkowski, L., Artiemjew, P.: On Classifying Mappings Induced by Granular Structures. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 264–286. Springer, Heidelberg (2008)
Polkowski, L., Artiemjew, P.: A Study in Granular Computing: On Classifiers Induced from Granular Reflections of Data. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS (LNAI), vol. 5390, pp. 230–263. Springer, Heidelberg (2008)
Polkowski, L.: On the Idea of Using Granular Rough Mereological Structures in Classification of Data. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 213–220. Springer, Heidelberg (2008)
Polkowski, L.: Granulation of knowledge: Similarity based approach in information and decision systems. In: Meyers, R. (ed.) Encyclopedia of Complexity and System Sciences, article 00788. Springer, Heidelberg (2009)
Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P.P. (ed.) Advances in Machine Intelligence & Soft-Computing, vol. IV, pp. 17–33. Bookwrights, Raleigh (1997)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Skowron, A.: Boolean Reasoning for Decision Rules Generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 295–305. Springer, Heidelberg (1993)
Skowron, A.: Extracting laws from decision tables. Computational Intelligence. An International Journal 11(2), 371–388 (1995)
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) The Third International Workshop on Rough Sets and Soft Computing Proceedings (RSSC 1994), San Jose, California, USA, November 10-12, pp. 56–163. San Jose State University (1994); see also: Skowron, A., Stepaniuk, J.: Generalized approximation spaces. ICS Research Report 41/94, Warsaw University of Technology (1994); see also Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing, pp. 18–21. Simulation Councils, Inc., San Diego (1995)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2/3), 245–253 (1996)
Stepaniuk, J.: Rough - Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008)
Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North Holland, Amsterdam (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Artiemjew, P. (2013). A Review of the Knowledge Granulation Methods: Discrete vs. Continuous Algorithms. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30341-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-30341-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30340-1
Online ISBN: 978-3-642-30341-8
eBook Packages: EngineeringEngineering (R0)