Abstract
We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic performances. More generally, we characterize the possible Boolean functions characterizing when the picture falls in terms of which nails get removed as all monotone Boolean functions. This construction requires an exponential number of twists in the worst case, but exponential complexity is almost always necessary for general functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brunn, H.: Über Verkettung. Sitzungsberichte der Bayerische Akad. Wiss. 22, 77–99 (1892)
Demaine, E.D., Demaine, M.L., Uehara, R.: Any monotone Boolean function can be realized by interlocked polygons. In: CCCG 2010, pp. 139–142 (2010)
Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and open problems. J. Autom. Lang. Comb. 9(2-3), 233–256 (2005)
Makanin, G.S.: Decidability of the universal and positive theories of a free group. Mathematics of the USSR-Izvestiya 25(1), 75–88 (1985)
Pegg Jr., E.: http://www.mathpuzzle.com/hangingpicture.htm
Rolfsen, D.: Knots and Links. Publish or Perish, Inc., Houston (1976)
Sillke, T.: http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/quantum/B201
Sloane, N.J.A.: Sequence A073121. In: On-Line Encyclopedia of Integer Sequences (August 2002), http://www.research.att.com/projects/OEIS?Anum=A073121
Spivak, A.: Brainteasers B 201: Strange painting. Quantum, 13 (May/June 1997)
Stanford, T.: Brunnian braids and some of their generalizations. Bull. Lond. Math. Soc. To appear arXiv:math.GT/9907072, http://arXiv.org/abs/math/9907072
Tait, P.G.: On knots. Trans. Royal Society of Edinburgh 28, 145–190 (1876)
vos Savant, M.: Ask Marilyn. PARADE (2001) (Posed June 10 and solved June 17)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Demaine, E.D., Demaine, M.L., Minsky, Y.N., Mitchell, J.S.B., Rivest, R.L., Pǎtraşcu, M. (2012). Picture-Hanging Puzzles. In: Kranakis, E., Krizanc, D., Luccio, F. (eds) Fun with Algorithms. FUN 2012. Lecture Notes in Computer Science, vol 7288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30347-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-30347-0_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30346-3
Online ISBN: 978-3-642-30347-0
eBook Packages: Computer ScienceComputer Science (R0)