Skip to main content

Predicting Good Propagation Methods for Constraint Satisfaction

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7310))

Included in the following conference series:

  • 1796 Accesses

Abstract

Given the breadth of constraint satisfaction problems (CSPs) and the wide variety of CSP solvers, it can be difficult to determine a priori which solving method is best suited to a problem. We explore the use of machine learning to predict which solving method will be most effective for a given problem. Our investigation studies the problem of attribute selection for CSPs, and supervised learning to classify CSP instances drawn from four distinct CSP classes. We limit our study to the choice of two well-known, but simple, CSP solvers. We show that the average performance of the resulting solver is very close to the average performance of a CSP solver based on an oracle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Régin, J.: A filtering algorithm for constraints of difference in csps. In: Proceedings of the National Conference on Artificial Intelligence, p. 362. John Wiley & Sons Ltd. (1994)

    Google Scholar 

  2. Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: Proceedings of the National Conference on Artificial Intelligence, pp. 359–366. John Wiley & Sons Ltd. (1998)

    Google Scholar 

  3. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of the 11th European Conference on Artificial Intelligence, pp. 125–129. Springer, Heidelberg (1994)

    Google Scholar 

  5. Bessière, C., Régin, J.: MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32(1), 565–606 (2008)

    MATH  Google Scholar 

  7. Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Minton, S.: Automatically configuring constraint satisfaction programs: A case study. Constraints 1(1), 7–43 (1996)

    Article  MathSciNet  Google Scholar 

  9. Epstein, S., Wallace, R., Freuder, E., Li, X.: Learning propagation policies. In: Proceedings of the Second International Workshop on Constraint Propagation And Implementation, pp. 1–15 (2005)

    Google Scholar 

  10. Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using CBR to Select Solution Strategies in Constraint Programming. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 222–236. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. El Sakkout, H., Wallace, M., Richards, E.: An Instance of Adaptive Constraint Propagation. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Stergiou, K.: Heuristics for dynamically adapting propagation. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 485–489. IOS Press (2008)

    Google Scholar 

  13. Nadel, B.: Constraint satisfaction algorithms. Computational Intelligence 5(4), 188–224 (1989)

    Article  Google Scholar 

  14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  15. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  16. Gomes, C., Shmoys, D.: Completing quasigroups or latin squares: A structured graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and Generalizations, pp. 22–39 (2002)

    Google Scholar 

  17. Thompson, C.D.S.: Metareasoning about propagators for constraint satisfaction. Master’s thesis, Department of Computer Science, University of Saskatchewan (2011)

    Google Scholar 

  18. Hall, M.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 359–366 (2000)

    Google Scholar 

  19. Gent, I., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceedings of the 13th National Conference on Artificial Intelligence, pp. 246–252 (1996)

    Google Scholar 

  20. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thompson, C.D.S., Horsch, M.C. (2012). Predicting Good Propagation Methods for Constraint Satisfaction. In: Kosseim, L., Inkpen, D. (eds) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science(), vol 7310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30353-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30353-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30352-4

  • Online ISBN: 978-3-642-30353-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics