Skip to main content

Efficient Pairwise Classification Using Local Cross Off Strategy

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7310))

Included in the following conference series:

Abstract

The pairwise classification approach tends to perform better than other well-known approaches when dealing with multiclass classification problems. In the pairwise approach, however, the nuisance votes of many irrelevant classifiers may result in a wrong prediction class. To overcome this problem, a novel method, Local Crossing Off (LCO), is presented and evaluated in this paper. The proposed LCO system takes advantage of nearest neighbor classification algorithm because of its simplicity and speed, as well as the strength of other two powerful binary classifiers to discriminate between two classes. This paper provides a set of experimental results on 20 datasets using two base learners: Neural Networks and Support Vector Machines. The results show that the proposed technique not only achieves better classification accuracy, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Anand, R., Mehrotra, K., Mohan, C.K., Ranka, S.: Efficient classification for multiclass problems using modular neural networks. IEEE Transactions on Neural Networks 6(1), 117–124 (1995)

    Article  Google Scholar 

  3. Blake, C., Merz, C.: Uci repository of machine learning databases, department of information and computer sciences, university of california, irvine (1998)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines (2001)

    Google Scholar 

  5. Chang, C.C., Chien, L.J., Lee, Y.J.: A novel framework for multi-class classification via ternary smooth support vector machine. Pattern Recognition 44(6), 1235–1244 (2011)

    Article  MATH  Google Scholar 

  6. Clark, P., Boswell, R.: Rule Induction with CN2: Some Recent Improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  9. Escalera, S., Pujol, O., Radeva, P.: Re-coding ecocs without re-training. Pattern Recognition Letters 31, 555–562 (2010)

    Article  Google Scholar 

  10. Fei, B., Liu, J.: Binary tree of svm: A new fast multiclass training and cassification algorithm. IEEE Transactions on Neural Networks 17(696-704) (2006)

    Google Scholar 

  11. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721–747 (2002)

    MATH  Google Scholar 

  12. Garcia-Pedrajas, N., Ortiz-Boyer, D.: Improving multiclass pattern recognition by the combination of two strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(6), 1001–1006 (2006)

    Article  Google Scholar 

  13. Garcia-Pedrajas, N., Ortiz-Boyer, D.: An empirical study of binary classifier fusion methods for multiclass classification. Information Fusion 12(2), 111–130 (2011)

    Article  Google Scholar 

  14. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10, NIPS 1997, pp. 507–513. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  16. Hullermeier, E., Vanderlooy, S.: Combining predictions in pairwise classication: An optimal adaptive voting strategy and its relation to weighted voting. Pattern Recognition 43(1), 128–142 (2010)

    Article  Google Scholar 

  17. Iman, R., Davenport, J.: Approximations of the critical regions of the friedman statistic. Communications in Statistics 6, 571–595 (1980)

    Google Scholar 

  18. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Fogelman, J. (ed.) Neurocomputing: Algorithms, Architectures and Applications. Springer (1990)

    Google Scholar 

  19. Ko, J., Byun, H.: Binary Classifier Fusion Based on the Basic Decomposition Methods. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 146–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neurocomputing 55(1-2), 169–186 (2003)

    Article  Google Scholar 

  21. Moreira, M., Mayoraz, E.: Improved Pairwise Coupling Classification with Correcting Classifiers. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 160–171. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Park, S.-H., Fürnkranz, J.: Efficient Pairwise Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 658–665. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Platt, J.C., Cristianini, N., Shawe-taylor, J.: Large margin dags for multiclass classification. Advances in Neural Information Processing Systems 12, 547–553 (2000)

    Google Scholar 

  24. Wang, S.-J., Mathew, A., Chen, Y., Xi, L.-F., Ma, L., Lee, J.: Empirical analysis of support vector machine ensemble classifiers. Expert Systems with Applications 36(3, Part 2), 6466–6476 (2009)

    Article  Google Scholar 

  25. Windeatt, T., Ghaderi, R.: Binary labelling and decision-level fusion. Information Fusion 2(2), 103–112 (2001)

    Article  Google Scholar 

  26. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bagheri, M.A., Gao, Q., Escalera, S. (2012). Efficient Pairwise Classification Using Local Cross Off Strategy. In: Kosseim, L., Inkpen, D. (eds) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science(), vol 7310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30353-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30353-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30352-4

  • Online ISBN: 978-3-642-30353-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics