Abstract
Anomaly detection using One-Class Support Vector Machine (OCSVM) have attracted wide attention in practical applications. Recent research focuses on enhancing OCSVM using either ensemble learning techniques or Multiple Kernel Learning (MKL) since single kernels such as the Gaussian Radial-Based Function (GRBF) kernel might not be flexible enough to construct a proper feature space. In this paper, we develop a new kernel, called centralized GRBF. Further, the two GRBF and centralized GRBF are combined by using a new ensemble kernel technique, called Coupled Ensemble-Kernels (CEK), to improve OCSVM for anomaly detection. Therefore, the final classification model is itself a large-margin classifier while it is actually an ensemble classifier coined with two sub-large-margin models. We show that the proposed CEK outperforms previous approaches using traditional ensemble learning methods and MKL for anomaly detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing Surveys 41 (2009)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Li, G., Japkowicz, N., Hoffman, I., Kurt Ungar, R.: Probability estimation by maximum and minimum probability score in one-class learning for anomaly detection. In: Proc. of the NASA Conference on Intelligent Data Understanding, CIDU (2010)
Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)
Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press (2011)
Kim, H., Pang, S., Je, H., Kim, D., Yang Bang, S.: Constructing support vector machine ensemble. Pattern Recognition 36(12) (2003)
Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semidefinite programming. JMLR 5 (2004)
Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008)
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comp. 13, 1443–1471 (2001)
Schölkopf, B.: The kernel trick for distances. In: NIPS, pp. 301–307 (2000)
Shieh, A.D., Kamm, D.F.: Ensembles of One Class Support Vector Machines. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 181–190. Springer, Heidelberg (2009)
Tax, D.M.J.: One-class classification; concept-learning in the absence of counter-examples. Ph.D. thesis, Delft University of Technology (2001)
Zhang, K., Fan, W., Yuan, X.J., Davidson, I., Li, X.S.: Forecasting Skewed Biased Stochastic Ozone Days: Analyses and Solutions. In: Proceedings of the International Conference on Data Ming, pp. 753–764 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, G., Japkowicz, N., Yang, L. (2012). Anomaly Detection via Coupled Gaussian Kernels. In: Kosseim, L., Inkpen, D. (eds) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science(), vol 7310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30353-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-30353-1_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30352-4
Online ISBN: 978-3-642-30353-1
eBook Packages: Computer ScienceComputer Science (R0)