Skip to main content

Anomaly Detection via Coupled Gaussian Kernels

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7310))

Included in the following conference series:

  • 1888 Accesses

Abstract

Anomaly detection using One-Class Support Vector Machine (OCSVM) have attracted wide attention in practical applications. Recent research focuses on enhancing OCSVM using either ensemble learning techniques or Multiple Kernel Learning (MKL) since single kernels such as the Gaussian Radial-Based Function (GRBF) kernel might not be flexible enough to construct a proper feature space. In this paper, we develop a new kernel, called centralized GRBF. Further, the two GRBF and centralized GRBF are combined by using a new ensemble kernel technique, called Coupled Ensemble-Kernels (CEK), to improve OCSVM for anomaly detection. Therefore, the final classification model is itself a large-margin classifier while it is actually an ensemble classifier coined with two sub-large-margin models. We show that the proposed CEK outperforms previous approaches using traditional ensemble learning methods and MKL for anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing Surveys 41 (2009)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Li, G., Japkowicz, N., Hoffman, I., Kurt Ungar, R.: Probability estimation by maximum and minimum probability score in one-class learning for anomaly detection. In: Proc. of the NASA Conference on Intelligent Data Understanding, CIDU (2010)

    Google Scholar 

  4. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MATH  Google Scholar 

  5. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press (2011)

    Google Scholar 

  6. Kim, H., Pang, S., Je, H., Kim, D., Yang Bang, S.: Constructing support vector machine ensemble. Pattern Recognition 36(12) (2003)

    Google Scholar 

  7. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semidefinite programming. JMLR 5 (2004)

    Google Scholar 

  8. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comp. 13, 1443–1471 (2001)

    Article  MATH  Google Scholar 

  10. Schölkopf, B.: The kernel trick for distances. In: NIPS, pp. 301–307 (2000)

    Google Scholar 

  11. Shieh, A.D., Kamm, D.F.: Ensembles of One Class Support Vector Machines. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 181–190. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Tax, D.M.J.: One-class classification; concept-learning in the absence of counter-examples. Ph.D. thesis, Delft University of Technology (2001)

    Google Scholar 

  13. Zhang, K., Fan, W., Yuan, X.J., Davidson, I., Li, X.S.: Forecasting Skewed Biased Stochastic Ozone Days: Analyses and Solutions. In: Proceedings of the International Conference on Data Ming, pp. 753–764 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, G., Japkowicz, N., Yang, L. (2012). Anomaly Detection via Coupled Gaussian Kernels. In: Kosseim, L., Inkpen, D. (eds) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science(), vol 7310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30353-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30353-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30352-4

  • Online ISBN: 978-3-642-30353-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics