Skip to main content

Towards Better Prioritization of Epigenetically Modified DNA Regions

  • Conference paper
Artificial Intelligence: Theories and Applications (SETN 2012)

Abstract

Epigenetic modifications of the genome can cause profound changes in phenotype of an organism. Experimental methods allow us to detect regions of the DNA that have been epigenetically modified; these regions are said to be enriched in a queried state versus a control. Detecting the enriched regions is not a simple matter as making sense of the data involves multiple analytical steps and often results in false calls. In this study, we analyze the utility of using additional features of the data (such as the transcription start site (TSS) and the histone coverage) to detect enrichment. We train a decision tree ensemble using these three features and review how well they identify regions that are truly enriched (as validated by q-PCR). We find that the enrichment score derived directly from ChIP-chip experiment data is less informative than the histone coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bieda, M., Xu, X., Singer, M.A., Green, R., Farnham, P.J.: Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 16(5), 595–605 (2006)

    Article  Google Scholar 

  2. Kreuz, M., Rosolowski, M., Berger, H., Schwaenen, C., Wessendorf, S., Loeffler, M., Hasenclever, D.: Development and implementation of an analysis tool for array-based comparative genomic hybridization. Methods Inf. Med. 46(5), 608–613 (2007)

    Google Scholar 

  3. Pelizzola, M., Koga, Y., Urban, A.E., Krauthammer, M., Weissman, S., Halaban, R., Molinaro, A.M.: MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res. 18(10), 1652–1659 (2008)

    Article  Google Scholar 

  4. Dowell, R.D.: Transcription factor binding variation in the evolution of gene regulation. Trends Genet. 26(11), 468–475 (2010)

    Article  Google Scholar 

  5. Gilchrist, D.A., Fargo, D.C., Adelman, K.: Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 48(4), 398–408 (2009)

    Article  Google Scholar 

  6. MacQuarrie, K.L., Fong, A.P., Morse, R.H., Tapscott, S.J.: Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 27(4), 141–148 (2011)

    Article  Google Scholar 

  7. Toedling, J., Huber, W.: Analyzing ChIP-chip data using bioconductor. PLoS Comput. Biol. 4(11), e1000227 (2008)

    Google Scholar 

  8. Toedling, J., Skylar, O., Krueger, T., Fischer, J.J., Sperling, S., Huber, W.: Ringo–an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics 8, 221 (2007)

    Article  Google Scholar 

  9. Chen, K.B., Zhang, Y.: A varying threshold method for ChIP peak-calling using multiple sources of information. Bioinformatics 26(18), i504–i510 (2010)

    Google Scholar 

  10. Johnson, D.S., Li, W., Gordon, D.B., Bhattacharjee, A., Curry, B., Ghosh, J., Brizuela, L., Carroll, J.S., Brown, M., Flicek, P., Koch, C.M., Dunham, I., Bieda, M., Xu, X., Farnham, P.J., Kapranov, P., Nix, D.A., Gingeras, T.R., Zhang, X., Holster, H., Jiang, N., Green, R.D., Song, J.S., McCuine, S.A., Anton, E., Nguyen, L., Trinklein, N.D., Ye, Z., Ching, K., Hawkins, D., Ren, B., Scacheri, P.C., Rozowsky, J., Karpikov, A., Euskirchen, G., Weissman, S., Gerstein, M., Snyder, M., Yang, A., Moqtaderi, Z., Hirsch, H., Shulha, H.P., Fu, Y., Weng, Z., Struhl, K., Myers, R.M., Lieb, J.D., Liu, X.S.: Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res. 18(3), 393–403 (2008)

    Article  Google Scholar 

  11. Sharp, A.J., Migliavacca, E., Dupre, Y., Stathaki, E., Sailani, M.R., Baumer, A., Schinzel, A., Mackay, D.J., Robinson, D.O., Cobellis, G., Cobellis, L., Brunner, H.G., Steiner, B., Antonarakis, S.E.: Methylation profiling in individuals with uniparental disomy identifies novel differentially methylated regions on chromosome 15. Genome Res. 20(9), 1271–1278 (2010)

    Article  Google Scholar 

  12. Sharp, A.J., Stathaki, E., Migliavacca, E., Brahmachary, M., Montgomery, S.B., Dupre, Y., Antonarakis, S.E.: DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 21(10), 1592–1600 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iacucci, E. et al. (2012). Towards Better Prioritization of Epigenetically Modified DNA Regions. In: Maglogiannis, I., Plagianakos, V., Vlahavas, I. (eds) Artificial Intelligence: Theories and Applications. SETN 2012. Lecture Notes in Computer Science(), vol 7297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30448-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30448-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30447-7

  • Online ISBN: 978-3-642-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics