Skip to main content

The Master-Slave Stochastic Knapsack Modelling for Fully Dynamic Spectrum Allocation

  • Conference paper
Wireless Internet (WICON 2011)

Abstract

Scarcity problem of radio spectrum resource stimulates the research on cognitive radio technology, in which dynamic spectrum allocation attracts lots of attention. For higher access efficiency in cognitive radio context, we suggest a fully dynamic resource allocation scheme for primary and secondary users, which is modelled by a master-slave stochastic knapsack process. Equilibrium behavior is analyzed, and expressions of blocking probability of both slave and master classes are derived as performance criterion and verified by numeric simulation, as well as forced termination probability of the secondary users. Compared to traditional opportunistic spectrum access (OSA), which can be regarded as half dynamic, our scheme leads to less termination events for the slaves while keeping the same behavior for the master class, promoting the system access performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitola, J.: Cognitive Radio: An Integrated Agent Atchitecture for Software Defined Radio, Ph.D. dissertation, KTH, Stockholm, Sweden (December 2000)

    Google Scholar 

  2. Webb, W.: Wireless Communications: The Future. John Wiley & Sons (2007)

    Google Scholar 

  3. Haykin, S.: Cognitive Radio: Brain-Empowered Wireless Communications. IEEE Journal on Selected Areas in Communications, 23(2) (February 2005)

    Google Scholar 

  4. Akyildiz, I.F., Lee, W.-Y., et al.: NeXt generation dynamic spectrum access cognitive radio wireless networks: A survey. Computer Networks 50(2006), 2127–2159 (2006)

    Article  MATH  Google Scholar 

  5. Diego Pacheco-Paramo, V.P., Martinez-Bauset, J.: Optimal Admission Control in Cognitive Radio Networks. In: Proc. 4th Int. Conf. on Cognitive Radio Oriented Wireless Networks and Commun. (June 2009)

    Google Scholar 

  6. Zhu, X., Shen, L., Yum, T.-S.P.: Analysis of Cognitive Radio Spectrum Access with Optimal Channel Reservation. IEEE Commun. Lett. 11(4), 304–306 (2007)

    Article  Google Scholar 

  7. Kalil, M.A., Al-Mahdi, H., Mitschele-Thiel, A.: Analysis of Opportunistic Spectrum Access in Cognitive Ad Hoc Networks. In: Al-Begain, K., Fiems, D., Horváth, G. (eds.) ASMTA 2009. LNCS, vol. 5513, pp. 16–28. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Luu, L., Daneshrad, B.: An Adaptive Weave Architecture Radio With Spectrum Sensing Capabilities to Relax RF Component Requirements. IEEE Journal on Selected Areas in Communications 25(3), 538–545 (2007)

    Article  Google Scholar 

  9. Gandetto, M., Regazzoni, C.: Spectrum Sensing: A Distributed Approach for Cognitive Terminals. IEEE Journal on Selected Areas in Communications 25(3), 546–557 (2007)

    Article  Google Scholar 

  10. Jafar, S.A., et al.: Capacity Limits of Cognitive Radio With Distributed and Dynamic Spectral Activity. IEEE Journal on Selected Areas in Communications 25(3) (April 2007)

    Google Scholar 

  11. Brockmeyer, E., Halstrom, H.L., Jensen, A.: The life and Works of A.K. Erlang, The Copenhagen Telephone Co., Copenhagen (1948)

    Google Scholar 

  12. Ross, K.W., Hancock, P.J.: Multiservice Loss Models for Broadband Telecommunication Networks. Springer-Verlag New York, Inc., Secaucus (1995)

    Book  MATH  Google Scholar 

  13. Papastavrou, J.D., Rajagopalan, S., Kleywegt, A.J.: The dynamic and stochastic knapsack problem with deadlines. Management Sci. 42, 1706–1718 (1996)

    Article  MATH  Google Scholar 

  14. Puri, P.S.: A Linear Birth and Death Process under the Influence of Another Process. Journal of Applied Probability 12(1), 1–17 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Becker, N.G.: A Stochastic Model for Two Interacting Populations. Journal of Applied Probability 7(3), 544–564 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Watanabe, K., Ishibashi, K., Kohno, R.: Performance of Cognitive Radio Technologies in The Presence of Primary Radio Systems. In: The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007), Athens, Greece (September 2007)

    Google Scholar 

  17. Neel, J.: Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms, Ph.D. dissertation, Virginia Polytechnic Institute and State University, Stockholm, Virginia, USA (2006)

    Google Scholar 

  18. Martinez-Bauset, J., Pla, V., Pacheco-Paramo, D.: Comments on Analysis of Cognitive Radio Spectrum Access with Optimal Channel Reservation. IEEE Communications Letters 13(10), 739 (2009)

    Google Scholar 

  19. Ahmed, W., Gao, J., Faulkner, M.: Performance Evaluation of a Cognitive Radio Network with Exponential and Truncated Usage Models. In: 4th International Symposium on Wireless Pervasive Computing, pp. 1–5 (2009)

    Google Scholar 

  20. Heo, J., Shin, J., Nam, J., Lee, Y., Park, J.G., Cho, H.-S.: Mathematical Analysis of Secondary User Traffic in Cognitive Radio System. In: IEEE Vehicular Technology Conference (September 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Zhang, S., Yang, F., Zhou, W. (2012). The Master-Slave Stochastic Knapsack Modelling for Fully Dynamic Spectrum Allocation. In: Ren, P., Zhang, C., Liu, X., Liu, P., Ci, S. (eds) Wireless Internet. WICON 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30493-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30493-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30492-7

  • Online ISBN: 978-3-642-30493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics