Skip to main content

Optimization of Artificial Neural Network Structure in the Case of Steganalysis

  • Chapter
Handbook of Optimization

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 38))

Abstract

This research introduces a method of steganalysis by means of neural networks and its structure optimization. The main aim is to explain the approach of revealing a hidden content in jpeg files by feed forward neural network with Levenberg-Marquardt training algorithm. This work is also concerned to description of data mining techniques for structure optimization of used neural network. The results showed almost 100% success of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cole, E., Krutz, D.R.: Hiding Sight, 321 p. Wiley Publishing, Inc., United States of America (2003) ISBN 0-471-44449-9

    Google Scholar 

  2. Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography, 283 p. MIT, Cambridge (2001), http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

  3. Hertz, J., Kogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison–Wesley (1991)

    Google Scholar 

  4. http://steghide.sourceforge.net/

  5. http://linux01.gwdg.de/~alatham/stego.html

  6. http://www.outguess.org/detection.php

  7. http://www.outguess.org/

  8. Provos, N., Honeyman, P.: Detecting Steganographic Content on the Internet. CITI Technical Report 01-11 (2001)

    Google Scholar 

  9. Provos, N., Honeyman, P.: Hide and Seek: An Introduction to Steganography. IEEE Security & Privacy 1(3), 32–44 (2003)

    Article  Google Scholar 

  10. Westfeld, A., Pfitzmann, A.: Attacks on Steganographic Systems. In: Proceedings of Information Hiding - Third International Workshop. Springer (September 1999)

    Google Scholar 

  11. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG images: Breaking the F5 algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer, Heidelberg (2003), http://www.ws.binghamton.edu/fridrich/Research/f5.pdf (last accessed: December 24, 2003)

    Chapter  Google Scholar 

  12. Fridrich, J., Goljan, M., Hogea, D.: New Methodology for Breaking Steganographic Techniques for JPEGs. Submitted to SPIE: Electronic Imaging 2003, Security and Watermarking of Multimedia Contents, Santa Clara, California (2003)

    Google Scholar 

  13. Fridrich, J.: Feature-Based Steganalysis for JPEG Images and Its Implications for Future Design of Steganographic Schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Farid, H., Lyu, S.: Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 340–354. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Hempstalk, K.: Hiding Behind Corners: Using Edges in Images for Better Steganography. In: Proceedings of the Computing Women’s Congress, Hamilton, New Zealand, February 11-19 (2006)

    Google Scholar 

  16. http://www.cs.waikato.ac.nz/ml/weka/

  17. Gül, G., Dirik, A.E., Avcibas, I.: Steganalytic Features for JPEG Compression-Based Perturbed Quantization. IEEE Signal Processing Letters 3 (March 2007)

    Google Scholar 

  18. Matousek, R.: Using AI Methods to Find a Non-Linear Regression Model with a Coupling Condition. Engineering Mechanics 17(5/6), 419–431 (2011) ISSN: 1802-1484

    Google Scholar 

  19. Volna, E.: Learning and evolution in artificial neural networks: Comparison study. In: ANNIP 2008, Madeira, Portugal, pp. 10–17 (2008) ISBN: 978-989-8111-33-3

    Google Scholar 

  20. Volna, E.: Design of neural network trees. In: Mendel 2008, pp. 978–980. Technical University of Brno (2008) ISBN: 978-80-214-3675-6

    Google Scholar 

  21. Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, 33, ch. 7. Springer (2004)

    Google Scholar 

  22. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London

    Google Scholar 

  23. Matousek, R.: HC12: The Principle of CUDA Implementation. In: MENDEL 2010. Mendel Journal series, pp. 303–308. VUT, Brno (2010) ISBN: 978-80-214-4120-0, ISSN: 1803-3814

    Google Scholar 

  24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn., pp. 385–392. MIT Press and McGraw-Hill, Cambridge (2001) ISBN 0-262-03293-7. Section 16.3

    Google Scholar 

  25. ImageMagick, http://www.imagemagick.org/script/index.php

  26. Obayashi, S., Jeong, S., Chiba, K.: Multiobjective Design Exploration for Aerodynamic Configurations. American Institute of Aeronautics and Astronautics (August 22, 2007)

    Google Scholar 

  27. Mosavi, A.: Multiple Criteria Decision-Making Preprocessing Using Data Mining Tools. IJCSI International Journal of Computer Science Issues 7(2(1)) (March 2010) ISSN (Online): 1694-0784

    Google Scholar 

  28. Witten, I.H., Frank, E., Hall, M.A.: Datamining – Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011) ISBN: 978-0-12-374856-0

    Google Scholar 

  29. Software OutGuess, http://www.outguess.org

  30. Defending Against Statistical Steganalysis Niels Provos. In: 10th USENIX Security Symposium, Washington, DC (August 2001)

    Google Scholar 

  31. Hetzl S.: Steghide (1) - Linux man page, http://steghide.sourceforge.net/documentation/manpage.php (cit. May 21, 2008)

  32. Westfeld, A.: High Capacity Despite Better Steganalysis (F5-—A Steganographic Algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Oplatkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oplatkova, Z., Holoska, J., Prochazka, M., Senkerik, R., Jasek, R. (2013). Optimization of Artificial Neural Network Structure in the Case of Steganalysis. In: Zelinka, I., Snášel, V., Abraham, A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30504-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30503-0

  • Online ISBN: 978-3-642-30504-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics