Abstract
This research introduces a method of steganalysis by means of neural networks and its structure optimization. The main aim is to explain the approach of revealing a hidden content in jpeg files by feed forward neural network with Levenberg-Marquardt training algorithm. This work is also concerned to description of data mining techniques for structure optimization of used neural network. The results showed almost 100% success of detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cole, E., Krutz, D.R.: Hiding Sight, 321 p. Wiley Publishing, Inc., United States of America (2003) ISBN 0-471-44449-9
Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography, 283 p. MIT, Cambridge (2001), http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
Hertz, J., Kogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison–Wesley (1991)
Provos, N., Honeyman, P.: Detecting Steganographic Content on the Internet. CITI Technical Report 01-11 (2001)
Provos, N., Honeyman, P.: Hide and Seek: An Introduction to Steganography. IEEE Security & Privacy 1(3), 32–44 (2003)
Westfeld, A., Pfitzmann, A.: Attacks on Steganographic Systems. In: Proceedings of Information Hiding - Third International Workshop. Springer (September 1999)
Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG images: Breaking the F5 algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer, Heidelberg (2003), http://www.ws.binghamton.edu/fridrich/Research/f5.pdf (last accessed: December 24, 2003)
Fridrich, J., Goljan, M., Hogea, D.: New Methodology for Breaking Steganographic Techniques for JPEGs. Submitted to SPIE: Electronic Imaging 2003, Security and Watermarking of Multimedia Contents, Santa Clara, California (2003)
Fridrich, J.: Feature-Based Steganalysis for JPEG Images and Its Implications for Future Design of Steganographic Schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)
Farid, H., Lyu, S.: Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 340–354. Springer, Heidelberg (2003)
Hempstalk, K.: Hiding Behind Corners: Using Edges in Images for Better Steganography. In: Proceedings of the Computing Women’s Congress, Hamilton, New Zealand, February 11-19 (2006)
Gül, G., Dirik, A.E., Avcibas, I.: Steganalytic Features for JPEG Compression-Based Perturbed Quantization. IEEE Signal Processing Letters 3 (March 2007)
Matousek, R.: Using AI Methods to Find a Non-Linear Regression Model with a Coupling Condition. Engineering Mechanics 17(5/6), 419–431 (2011) ISSN: 1802-1484
Volna, E.: Learning and evolution in artificial neural networks: Comparison study. In: ANNIP 2008, Madeira, Portugal, pp. 10–17 (2008) ISBN: 978-989-8111-33-3
Volna, E.: Design of neural network trees. In: Mendel 2008, pp. 978–980. Technical University of Brno (2008) ISBN: 978-80-214-3675-6
Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, 33, ch. 7. Springer (2004)
Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London
Matousek, R.: HC12: The Principle of CUDA Implementation. In: MENDEL 2010. Mendel Journal series, pp. 303–308. VUT, Brno (2010) ISBN: 978-80-214-4120-0, ISSN: 1803-3814
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn., pp. 385–392. MIT Press and McGraw-Hill, Cambridge (2001) ISBN 0-262-03293-7. Section 16.3
ImageMagick, http://www.imagemagick.org/script/index.php
Obayashi, S., Jeong, S., Chiba, K.: Multiobjective Design Exploration for Aerodynamic Configurations. American Institute of Aeronautics and Astronautics (August 22, 2007)
Mosavi, A.: Multiple Criteria Decision-Making Preprocessing Using Data Mining Tools. IJCSI International Journal of Computer Science Issues 7(2(1)) (March 2010) ISSN (Online): 1694-0784
Witten, I.H., Frank, E., Hall, M.A.: Datamining – Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011) ISBN: 978-0-12-374856-0
Software OutGuess, http://www.outguess.org
Defending Against Statistical Steganalysis Niels Provos. In: 10th USENIX Security Symposium, Washington, DC (August 2001)
Hetzl S.: Steghide (1) - Linux man page, http://steghide.sourceforge.net/documentation/manpage.php (cit. May 21, 2008)
Westfeld, A.: High Capacity Despite Better Steganalysis (F5-—A Steganographic Algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Oplatkova, Z., Holoska, J., Prochazka, M., Senkerik, R., Jasek, R. (2013). Optimization of Artificial Neural Network Structure in the Case of Steganalysis. In: Zelinka, I., Snášel, V., Abraham, A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-30504-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30503-0
Online ISBN: 978-3-642-30504-7
eBook Packages: EngineeringEngineering (R0)