Abstract
We investigate a stochastic model for complex networks, based on a spatial embedding of the nodes, called the Spatial Preferred Attachment (SPA) model. In the SPA model, nodes have spheres of influence of varying size, and new nodes may only link to a node if they fall within its influence region. The spatial embedding of the nodes models the background knowledge or identity of the node, which influences its link environment. In this paper, we focus on the (directed) diameter, small separators, and the (weak) giant component of the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamic, L.A., Buyukkokten, O., Adar, E.: A social network caught in the web. First Monday 8 (2003)
Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge on-line social networking services. In: Proceedings of the 16th International Conference on World Wide Web (2007)
Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Mathematics 5, 175–196 (2009)
Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A Spatial Web Graph Model with Local Influence Regions. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 96–107. Springer, Heidelberg (2007)
Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Blandford, D., Blelloch, G.E., Kash, I.: Compact Representations of Separable Graphs. In: Proc. of ACM/SIAM Symposium on Discrete Algorithms, pp. 679–688 (2003)
Bollobás, B., Riordan, O.: Mathematical results on scale-free graphs. In: Bornholdt, S., Schuster, H. (eds.) Handbook of Graphs and Networks. Wiley-VCH, Berlin (2002)
Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 4, 5–34 (2004)
Bonato, A.: A course on the web graph. American Mathematical Society Graduate Studies in Mathematics 89 (2008)
Bonato, A., Janssen, J., Prałat, P.: Geometric Protean Graphs. Internet Mathematics 8, 2–28 (2012)
Bradonjic, M., Hagberg, A., Percus, A.G.: The structure of geographical threshold graphs. Internet Mathematics 4, 113–139 (2009)
Chung, F.R.K., Lu, L.: Complex Graphs and Networks. American Mathematical Society (2006)
Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhysics Letters 73(4), 649–655 (2006)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. In: SIGCOMM, pp. 251–262 (1999)
Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Mathematics 3(2), 187–206 (2006)
Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks II. Internet Mathematics 4(1), 87–111 (2008)
Higham, D.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24(8), 1093–1099 (2008)
Janssen, J.: Spatial Models for Virtual Networks. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 201–210. Springer, Heidelberg (2010)
Janssen, J., Prałat, P., Wilson, R.: Geometric Graph Properties of the Spatial Preferred Attachment model (preprint)
Janssen, J., Prałat, P., Wilson, R.: Estimating node similarity from co-citation in a spatial graph model. In: Proceedings of the 2010 ACM Symposium on Applied Computing–Special Track on Self-organizing Complex Systems, pp. 1329–1333 (2010)
Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007 (2007)
Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (2000)
Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International World Wide Web Conference (2010)
Masuda, N., Miwa, M., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Phys. Rev. E 71(3), 036108 (2005)
Mihail, M., Papadimitriou, C.H., Saberi, A.: On Certain Connectivity Properties of the Internet Topology. In: Proc. IEEE Symposium on Foundations of Computer Science, p. 28 (2003)
Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of on-line social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (2007)
Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. In: Proc. of the 39th Annual Allerton Conf. on Communication, Control, and Computing, pp. 182–191 (2001)
Yule, G.: A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis. Philosophical Transactions of the Royal Society of London (Series B) 213, 21–87 (1924)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cooper, C., Frieze, A., Prałat, P. (2012). Some Typical Properties of the Spatial Preferred Attachment Model. In: Bonato, A., Janssen, J. (eds) Algorithms and Models for the Web Graph. WAW 2012. Lecture Notes in Computer Science, vol 7323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30541-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-30541-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30540-5
Online ISBN: 978-3-642-30541-2
eBook Packages: Computer ScienceComputer Science (R0)