Abstract
Our goal is to quickly find top k lists of nodes with the largest degrees in large complex networks. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top k list of nodes with the largest degrees requires an average complexity of \(\mbox{O}(n)\), where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use the random walk based method. We show theoretically and by numerical experiments that for large networks the random walk method finds good quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random walk method which requires very little knowledge about the structure of the network.
Õ(n 2)
This research was sponsored by INRIA Alcatel-Lucent Joint Lab, by the NSF under CNS-1065133, and the U.S. Army Research Laboratory under Cooperative Agreement W911NF-09-2-0053.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avrachenkov, K., Ribeiro, B., Towsley, D.: Improving Random Walk Estimation Accuracy with Uniform Restarts. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 98–109. Springer, Heidelberg (2010)
Avrachenkov, K., Borkar, V., Nemirovsky, D.: Quasi-stationary distributions as centrality measures for the giant strongly connected component of a reducible graph. Journal of Comp. and Appl. Mathematics 234, 3075–3090 (2010)
Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick Detection of Top-k Personalized PageRank Lists. In: Frieze, A., Horn, P., Prałat, P. (eds.) WAW 2011. LNCS, vol. 6732, pp. 50–61. Springer, Heidelberg (2011)
Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: Proceedings of WWW 2004 (2004)
Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In: Proceedings of WWW 2011 (2011)
Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks: Exact solution of the Barabasi-Albert model. Phys. Rev. Lett. 85, 4633–4636 (2000)
van der Hofstad, R.: Random graphs and complex networks. Lecture Notes (2009), http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
Lim, Y., Menasche, D.S., Ribeiro, B., Towsley, D., Basu, P.: Online estimating the k central nodes of a network. In: Proceedings of IEEE NSW 2011 (2011)
Maiya, A.S., Berger-Wolf, T.Y.: Online Sampling of High Centrality Individuals in Social Networks. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 91–98. Springer, Heidelberg (2010)
Moreira, A.A., Andrade Jr., J.S., Amaral, L.A.N.: Extremum statistics in scale-free network models. Phys. Rev. Lett. 89, 268703, 4 pages (2002)
Matthys, G., Beirlant, J.: Estimating the extreme value index and high quantiles with exponential regression models. Statistica Sinica 13(3), 853–880 (2003)
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Avrachenkov, K., Litvak, N., Sokol, M., Towsley, D. (2012). Quick Detection of Nodes with Large Degrees. In: Bonato, A., Janssen, J. (eds) Algorithms and Models for the Web Graph. WAW 2012. Lecture Notes in Computer Science, vol 7323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30541-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-30541-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30540-5
Online ISBN: 978-3-642-30541-2
eBook Packages: Computer ScienceComputer Science (R0)