
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Measuring Test Case Similarity to Support
Test Suite Understanding

Michaela Greiler, Arie van Deursen and Andy Zaidman

Report TUD-SERG-2012-008

SERG

TUD-SERG-2012-008

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the International Conference on Objects, Models,
Components, Patterns (TOOLS), 2012, Springer.

c© copyright 2012, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Measuring Test Case Similarity to Support Test
Suite Understanding

Michaela Greiler, Arie van Deursen and Andy Zaidman

Delft University of Technology, The Netherlands
{m.s.greiler, arie.vandeursen, a.e.zaidman}@tudelft.nl

Abstract. In order to support test suite understanding, we investigate
whether we can automatically derive relations between test cases. In par-
ticular, we search for trace-based similarities between (high-level) end-
to-end tests on the one hand and fine grained unit tests on the other.
Our approach uses the shared word count metric to determine similarity.
We evaluate our approach in two case studies and show which relations
between end-to-end and unit tests are found by our approach, and how
this information can be used to support test suite understanding.

1 Introduction

Modern software development practice dictates early and frequent (automated)
testing. While automated test suites are helpful from a (continuous) integration
and regression testing perspective, they lead to a substantial amount of test
code [16]. Like production code, test code needs to be maintained, understood,
and adjusted upon changes to production code or requirements [8, 10, 13].

In light of the necessity of understanding and maintaining test suites, which
can become very costly due to the large amounts of test code, it is our stance
that tool support can reduce the burden put on the software and test engineers.
The V-model from Figure 1 shows that different levels of tests validate different
types of software artifacts, with each level contributing to the large amount of
test code. Figure 1 also shows that, ideally, requirements can be traced all the
way to source code, making it easier to perform impact analysis, i.e., determining
what the impact of a changing requirement is on the source code. The right side
of the V-model however, the test side, does not have similar tool support.

In this paper we propose to support engineers by helping them to understand
relationships between different types of test suites. As an example, an automated
test suite can include “end-to-end” tests, exercising an application from the user-
interface down to the database, covering functionality that is meaningful to the
end user.1 The test suite will typically also include dedicated unit tests, aimed
at exercising a very specific piece of behavior of a particular class. Suppose now
a requirement changes, entailing a modification to the end-to-end test, which
unit tests should the software engineer change as well? And vice-versa, if a unit
test is changed, should this be reflected in an end-to-end test as well?

1 We deliberately did not use the term acceptance test, as it is commonly associated
with tests executed by the customers/users.

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 1

Requirements End-to-end tests

... ...

Design Integration tests

Code Unit tests

Traceability
Te

st

Si
m

ila
ri

ty

Fig. 1. The V-model for testing

Our goal is to develop an automated technique for establishing relations
between test cases, in order to assist developers in their (test suite) maintenance
activities. To reach this goal, we employ dynamic analysis [4]. We collect call
traces from test executions, and use these to compute a similarity value based
on the shared word count metric. The resulting technique, which we call test
connection mining, can be used to establish connections between test cases at
different levels. An implementation of our technique is available via a framework
called the Test Similarity Correlator.

We evaluate the approach in two case studies, by elaborating on the useful-
ness of the approach to improve the understanding. We analyze how measuring
similarity based test relations can help to (1) find relevant tests by showing test
relationships, (2) understand the functionality of a test by describing high-level
test cases with related unit test cases and (3) reveal blank spots in the investi-
gated unit test suites.

This paper is structured as follows: in Section 2, we discuss our test execution
tracing approach. In Section 3, we describe the similarity metrics we use to
compare traces. Subsequently, we describe our approach and its implementation
(Section 3) as well as the set-up of our case studies (Section 4). The two case
studies are covered in Sections 5 and 6. We conclude with discussion, related
work, and a summary of our contributions in Sections 7–9.

2 Tracing and Trace Reduction

Test connection mining first of all requires obtaining execution traces with rele-
vant information of manageable size. This section describes the specific execution
trace we use and the trace reduction techniques we apply.

2.1 Tracing Test Executions

Before the test run, the production and test code are instrumented. Subsequently,
during the test run we obtain an execution trace comprised of various types of
events: (1) test execution events represent the execution of a test method, (2)
set-up and tear-down events mark the execution of a method which is either used
for test set-up or tear-down, (3) method execution events signalling the execution
of a public method within the code under test and (4) exception thrown events
indicating that an exception has been thrown.

For the similarity measurements it is important to be able to distinguish be-
tween production and test code. Otherwise, executions of test helper methods

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

2 TUD-SERG-2012-008

will appear in the trace and render the test cases as less related. Due to the
common practice to put the test code in a separate package (e.g., test.jpacman),
we simply filter executions of methods belonging to test code out during instru-
mentation. If test and production code are within the same packages, test classes
can be annotated and correctly addressed during instrumentation.

2.2 Handling mocks and stubs

When mocks or stubs are used, care has to be taken to correctly trace calls to
mocked classes and map these calls to the corresponding original class.

A first issue is that using mocking frameworks can have the effect that an
automatically created mock-object is not part of the instrumented package. For
example, by using the JMock2 library interfaces and classes defined to be mocked
are automatically wrapped in a proxy class which is located in the same pack-
age as the class directing the mocking operation, which will usually be the test
class or a helper class within the test package. Because we do not trace execu-
tions of methods defined in the test package, these classes have to be addressed
specifically. We do so by keeping track of a list of mocked types.

Mocking also plays a role for tracing the production code, as the mocked
and unmocked classes have to be mapped to allow identifying their similarity.
Therefore, we have to indicate that a method on a mockable object has been in-
voked. To that end, we check whether the runtime type of the target is contained
in the list of mocked classes. If yes, we further investigate whether the method
intercepted is part of the mockable type, since a class implementing a mockable
interface can have additional methods. Therefore, we derive recursively, via re-
flection, the set of methods belonging to this type including all methods defined
by it and its (potential) super-types. Only if the method intercepted is an actual
method of the mockable type, we discovered a mockery execution. As such, we
add it to the trace and mark it with a mockery mark.

Finally, we need to neutralize those mock and stub calls. As illustrated in
Listing 1.1, an execution of a method of a mocked type can be traced as the
execution of an inner class within the (test) class defining the mock operation.
As this differs from the trace events left behind by the execution of a method
of the actual type, we render them as similar, by using the mockery marks set
during tracing. Note also the actual type might differ from the mocked type by
being the implementation of a type or extending a common type. We inspect
the trace and replace all executions of methods of an actual type, as well as the
executions of the mocked type by their common (super) type. For example, the
traces in Listing 1.1 would be mapped to “void Sniper.join()”.

Listing 1.1. Trace differences with or without mocking

//Execution of method join of the mocked interface Sniper
void TestClass.$Proxy1.join()

//Execution of method join of class AuctionSniper implementing Sniper
void AuctionSniper.join()

2 http://www.jmock.org

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 3

2.3 Trace reduction

Trace reduction techniques are important in order to reduce the size of traces to
improve performance and scalability, and to help reveal the key functionality of
the test case, e.g., by reducing common functionality or noise [3]. We adopt the
following five reduction techniques before starting our analysis:

Language based Reduction. The traces are reduced to only public method
executions and do not comprise any private or protected methods. Furthermore,
only the production code is fully traced; for the test code only test method
execution events are traced to be able to separate individual test cases from an
entire test run.

Set-up and Tear-Down Reduction. As set-up and tear-down methods do not
explicitly contribute to the specific focus of a unit test, and are usually shared
by each test case within a test class, all method executions taking place during
set-up or tear-down are removed.

Shared Word Reduction. This trace reduction focuses on helping identify the
core functionality of a test case, by removing trace events that are omnipresent
in almost all test traces (defined by a variable threshold).

Complement Reduction. This reduction focuses on reducing the trace size
by removing calls within the trace of interest that are not existing in any of
the test traces to compare to. Although, after such a reduction target traces
will be calculated as more similar to the source trace, the reduction itself does
not influence the information perceived useful for ranking the target traces with
respect to each other.

Unique Set of Calls. This technique reduces all trace events within a trace to
a unique set of events. Because information such as order and position of events
are not preserved this reduction is only useful for similarity measurements that
do not take such information into account.

3 Determining Similarity Measurements

The second step involved in test connection mining consists of computing trace
similarities. In particular, we compute the similarity between a source trace te
(e.g., from an end-to-end test) and a target trace tu (e.g., from a unit test).

As similarity metrics we compared (1) shared word count [14], (2) Leven-
shtein distance [12] and (3) pattern matching based on the Knuth-Morris-Pratt
algorithm [12]. From an initial experiment we observed that all three metrics
provided similar results, which is why we continue with the shared word count
in the remainder of this paper.

The shared word count measurement [14] assesses the number of tracing
events that two test execution traces have in common. The similarity between
a source trace and a target trace is calculated as the number of tracing events
comprised in both test traces.

3.1 Relevancy support based on occurrence

Some tests are related to other tests, because they test common functionality.
Using this piece of knowledge, we can improve our results, by marking these

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

4 TUD-SERG-2012-008

more general tests as less important. Vice versa, by giving a test appearing less
often a high impact, results with more specific functionality are ranked higher.
We do so by multiplying the similarity measurement for a specific trace tu with
the total number of test cases it has been compared to, and dividing this by the
number of times the trace appeared as a result. We also use the average similarity
of test case tui to rank similar results. For example, if target test cases tu1 and
tu2 have the same similarity with te, than the test case with the smaller average
similarity among all tej is ranked first.

3.2 Implementation

We implemented the various trace reduction techniques and similarity measure-
ments presented in this paper in a Java based framework called Test Similarity
Correlator.3 Our tool offers an API to steer customized test similarity measure-
ments, varying in trace reduction, thresholds and similarity calculations.

To instrument the test execution we use the AspectJ4 framework. We offer
three different annotations to facilitate tracing of execution of test-methods, set-
up and tear-down methods. Test Similarity Correlator comprises several aspects,
addressing join points to weave in our tracing advices, including the aspect to
address code generated by the mocking library JMock.

4 Set-Up for Case studies

4.1 Research Questions

To evaluate the usefulness of test connection mining, we conducted an explorative
study based on two case studies. In these case studies, we aim at answering the
following questions:

RQ1 How do the associations found by test connection mining relate to associ-
ations a human expert would establish?

RQ2 Are the associations found useful for a typical test suite understanding
task, i.e., getting familiar with the test suite of a foreign system?

RQ3 How does mocking influence the similarity measurements?
RQ4 What are the performance characteristics, both in time and in space, of

the analysis conducted?

To answer these questions, we select a subject system that is shipped with
both a functional test suite as well as a unit test suite. We manually compile a
conceptual mapping between unit and functional test cases, and compare these
to the mappings found through test connection mining automatically.

The first case study is used to assess RQ1 and RQ4, whereby in the second
case study we focus on RQ2 and RQ3.

3 http://swerl.tudelft.nl/bin/view/Main/TestSimilarityCorrelator
4 http://www.eclipse.org/aspectj

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 5

4.2 Technique customization

The specific trace reduction configuration (see Section 2) we use in the case
studies consists of the following steps.

Before calculating the trace similarity, traces are reduced by using the Set-up
and Tear-Down reduction, followed by the Shared Word, and the Complement
reductions. The order of the reduction is important and influences the ranking
of the results. For example, if all unit test cases call a method “quit()” as part of
their tear down method, but only one unit test actually uses this method during
test execution, the application of first the Shared Word reduction and then the
Set-up and Tear-Down reduction would eliminate this call from the trace. The
Shared Word reduction technique can be customized by a threshold influencing
how many traces must comprise a trace event before it is removed.

For similarity measurements based on shared word count, which does not
take the order of events into account, the traces are further reduced to their
unique set of events.

5 Case Study I: JPacman

As first subject system we use JPacman,5 a simple game written in Java inspired
by Pacman, used for educational purposes at Delft University of Technology since
2003. Key characteristics of JPacman are listed in Figure 2.

JPacman follows the model-view-controller architecture. Each class in the
model package comes with a (JUnit) unit test class, which together comprise 73
unit test cases. The test suite makes use of several test patterns described by
Binder [1], using state machines, decision tables, and patterns such as polymor-
phic server test (reusing superclass test suites at the subclass level). This results
in a line coverage of 90% in the model package, as measured by Cobertura.6

The functional test suite is directly derived from a set of JPacman user
scenarios written in behavior-driven development7 style. These scenarios are of
the form given in Listening 3. There are 14 such scenarios, each of which is
translated into a JUnit test case. The resulting functional test cases exercise
around 80% of the user interface code and around 90% of the model code.

5.1 Obtaining the Conceptual Mapping

JPacman’s main developer created a conceptual mapping in advance. The key
criterion to identify a relation between an end-to-end test t and a unit test u was

5 Version 4.4.4, dated October 2011. JPacman can be obtained for research and edu-
cational purposes from its author, 2nd author of this paper.

6 http://cobertura.sourceforge.net/
7 http://dannorth.net/whats-in-a-story/

Code size (lines) 4,000
Test code size (lines) 2,000
No of classes 26
No of test classes 16
No of unit tests 73
No of functional tests 14

Fig. 2. JPacman characteristics

Given [context]
And [some more context]...

When [event]
Then [outcome]

And [another outcome]...

Fig. 3. JPacman Test Scenarios

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

6 TUD-SERG-2012-008

the question whether the behavior of u is important in order to understand the
behavior of t. The conceptual mapping contains both positive incidences (im-
portant connections to be established) and negative ones (unlikely connections
that would be confusing). In most end-to-end (ETE — numbered from ETE01
to ETE14) test cases, we had at least 5 positive and 9 negative connections.

While the mapping obtained can be considered a useful baseline, it should
be noted that it is incomplete: it only identifies clearly connected and clearly
disconnected test pairs. The remaining tests are categorized as undecided. Fur-
thermore, we tried to be as specific as possible: relations to “infrastructure” unit
test cases relevant to many end-to-end tests were not included.

5.2 RQ1: Comparison to Conceptual Mapping

We used a spreadsheet containing 14 × 73 matrices to study the differences
between the conceptual mapping as well as the ones obtained through our au-
tomated analysis. Due to size restrictions, we can not show all results of the
measurements8. Besides saving space, showing the top 5 results is also realistic
from a practical point of view, because in practice a user of the tool would also
look primarily at the highest ranked results. In Table 1 we show for each end-
to-end test the 5 most similar unit tests based on the shared word count metric.
A ranking is indicated as optimal in case it is marked as highly related in the
conceptual mapping and it is ranked high (i.e. top match). Incidences marked as
related by the expert which are high ranked are evaluated as good. Results of the
category undecided are subjected to additional manual analysis: the results are
indicated as ok only if the relation is strong enough to be justified, and labeled
as nok otherwise. Unrelated results ranked highly, as well as (highly) related
results ranked low, are also evaluated as nok.

The overall impression is that the automated analysis provides a useful ap-
proximation of the manually obtained mapping. Looking at all the results for
each end-to-end test case, we found that:

– For all but one end-to-end test (i.e. ETE02), the top match is ranked as the
first or second automatically calculated result.

– Within the top 10 results only one unit test case marked unrelated is listed.
– All remaining results ranked within the top 10 (i.e. from the undecided cat-

egory) are sufficiently related to the end-to-end tests to justify investigation.
– No relations are missing as all test cases marked as relevant by the expert

have been identified as related. Thereby, 80% of all test cases marked as re-
lated have been ranked within the upper half of the results showing similarity
and within the top 30% of overall results.

– 92% of all tests marked as unrelated correctly map to no similarity by the
measurements. The remaining unrelated tests revealed weak connections and
have been ranked in the bottom half of the results, except for one test (14).

8 The complete results are available at http://swerl.tudelft.nl/twiki/pub/Main/

TestSimilarityCorrelator/similarityResults.zip

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 7

Test Case (no.) match Test Case (no.) match Test Case (no.) match
1 Move to empty cell & undo 2 Move beyond border 3 Move to wall

MovePlayer (23) optimal FoodMove (44) ok DxDyImpossibleMove (15) optimal
UndoEmptyMove (17) optimal FoodMoveUndo (39) ok SimpleMove (22) good
UndoDxDy (18) optimal UndoFoodMove (19) ok DieAndUndo (26) optimal
UndoFoodMove (19) ok PlayerWins (24) ok DieAndRestart (25) optimal
Apply (38) optimal wonSneakPaths (35) ok MovePlayer (23) good
4 Eat food & undo 5 Win and restart 6 Get killed and restart

FoodMoveUndo (39) optimal SetUp (12) ok DieAndRestart (25) optimal
UndoFoodMove (19) optimal PlayerWins (24) optimal PlayerWins (24) ok
UndoFood (47) optimal FoodMoveUndo (39) good wonSneakPaths (35) ok
FoodMove (44) optimal FoodMove (44) optimal Updates (37) ok
MovePlayer (23) good DxDyPossibleMove (14) ok UndoFoodMove (19) ok
7 Monster to empty cell 8 Monster beyond border 9 Monster to wall

UndoMonsterMove (16) optimal Wall (70) optimal EmptyCell (69) optimal
MoveMonster (28) optimal MonsterPlayer (73) ok MonsterFood (72) ok
Updates (37) ok MonsterFood (72) ok MonsterPlayer (73) ok
OutOfBorder (68) ok EmptyCell (69) optimal Wall (70) optimal
FoodMove (71) ok MonsterKillsPlayer (27) ok MonsterKillsPlayer (27) ok
10 Monster to food 11 Monster to player 12 Suspend

MoveMonster (28) optimal MonsterPlayer (73) optimal SuspendRestart (29) optimal
Updates (37) ok 70 Wall ok Start (21) good
Apply (66) good MonsterFood (72) ok SneakPlaying (33) ok
FoodMoveUndo (67) optimal EmptyCell (69) good SuspendUndo (30) optimal
FoodMove (71) ok MonsterKillsPlayer (27) optimal SneakHalted (36) good
13 Die and Undo 14 Smoke

DieAndUndo (26) optimal SetUp (12) good
MovePlayer (23) good PlayerWins (24) optimal
wonSneakPaths (35) ok FoodMoveUndo (39) ok
SimpleMove (22) ok wonSneakPaths (35) ok
DieAndRestart (25) optimal FoodMove (44) ok

Table 1. Top 5 ranked unit tests per end-to-end test for JPacman

Correct Identifications. Top matches. The top two results of the measure-
ments in most cases also contain the top match for an end-to-end test case. For
example, the end-to-end test involving a keyboard event to move the player to
the right and then undoing that move (ETE01), is connected to a unit test actu-
ally moving the player. As another example, ETE03 attempts to move through
a wall (which is impossible), and is connected to a unit test addressing the cor-
rect positioning of the Pacman’s mouth after attempting an impossible move.
As dying is a type of an impossible state, connections to dying are also correct.

Moving Monsters vs. Players. Some groups of test cases are moving players
(i.e. 44, 45, 46), whereas other tests (72, 73, 74) are moving monsters. In the con-
ceptual mapping, tests moving players are related to ETE tests 1-6, and marked
as unrelated for ETE tests 7-11, whereby tests moving players are related the
opposite way. These relations respectively non-relations are correctly identified
by the measurements, except for test case 74, which we will outline below.

Surprises. Moving Monsters. According to the expert, a group of tests (72,
73, 74) all move monsters, and should lead to similar rankings. Surprisingly, one
test (74) performs differently from the rest, and also differs from the conceptual
mapping. After investigation, it became apparent that this test is not as focused
as expected and desired by the expert. The test even concludes with a method
which is never followed by an assertion statement. This investigation revealed a
clear “test smell” and pointed the expert to a place in need of a refactoring.

Sneak paths. A surprising connection is provided for the “monster to player”
test (ETE11), which is connected to “wonSneakPaths” (35). This relates to unit
tests aimed at testing for sneak paths in state machines, following Binder’s test
approach for state machines [1]. A sneak path is an illegal transition, and the

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

8 TUD-SERG-2012-008

JPacman sneak path test cases verify that illegal 〈state, event〉 pairs do not lead
to a state change. To do so, the test case brings the application in the desired
state (e.g., Playing, or Died), and then attempts to trigger a state change.

The process of bringing the application in a given state, however, may bear
similarity with other test cases. For example in unit test 35, the player first
wins. Then multiple steps, such as the player getting caught by a monster or the
player running into a monster, are triggered which should not change the state
from “won” to “lost” anymore. As this triggers the player to die or being killed,
this sneak path test case shows up as being related not only to end-to-end tests
triggering winning situations. A better separation of set-up logic (bringing the
application in the right state) and executing the method-under-test would help
reveal more focused associations.

Deviations. Moving beyond border. ETE02 is the only test which does not map
to a top match within the first 5 results. The first top matches are found from
rank 7 onwards. Reasons for this behavior are that ETE02 is one of the smallest
end-to-end tests involving a move, and that testing the behavior for “beyond
border” covers branches that only lead to different data, not different calls made.
All 5 high ranked results correctly involve doing a move. After investigation of
the results, the expert reports that the unit test cases indicated as related in the
conceptual mapping do a bit more than only a move (e.g. an undo operation),
which is why our approach gives these unit tests a lower rank.

Move to Wall. ETE03 contains the only unrelated connection within the top
10 results: on rank 9 is the “possible move” test. On the other hand, counterpart
test “impossible move” is a top match.

Disparate test sizes. The main deviations (tests marked as unrelated being
ranked higher than tests marked as related) are due to extreme size differences in
unit tests. The expert easily relates narrow focused tests, whereby the automatic
approach, by design of the shared word count, gives preference to broader tests
(which share more events). A prime example is the “wonSneakPaths” test, which
is related to many end-to-end tests as it triggers a broad range of functionality.
The more equal the amount of functionality tested by the unit test cases is, the
better the results revealed by the automatic approach.

Additional Lessons Learned. API violations. The smoke test (ETE14) con-
sists of a series of events applied to JPacman. As such, it is fairly heterogeneous,
doing many different things. This makes it hard to come up with a reasonable
positive mapping to unit tests. On the other hand, some unit test cases are not
relevant to any end-to-end test, including the “smoke test”. As an example, tests
57, 58 and 59 deal with using the API in a wrong way, which should generate an
appropriate exception. Seeing that these test cases are not related to the smoke
test gives confidence that such violations are not possible at a higher level.

Human vs. automated mapping. Fine-grained deviations between tests, like
state and specific object instantiations, have been used by the expert to relate
tests to each other. For example, for the expert the determining events for re-
lating unit test cases involving moving to end-to-end tests have been the actual

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 9

actors (objects). The automated approach is able to differentiate similar to an
expert between objects. On the other hand, the importance of states for hu-
man mappings is not equally reflected by the automated approach as it assigns
every event the same importance. Identifying and prioritizing states before the
similarity calculation is performed could improve the approximation to the “hu-
man” conceptual mapping. As we will see in the second case study, if tests are
small and focused, the impact of state changes reflects well in the similarity
measurements.

5.3 RQ4: Performance Characteristics

Since JPacman is the larger case study, we will answer RQ4 here. The traces
obtained for both case studies are relatively small: the smallest one is 1kb and
comprises 2 trace events, the largest being 62Kb and 700 trace events (after ap-
plying trace reduction). Similarity calculations within this dimension are com-
puted within 10 seconds for the whole test suite. Even the results for the smoke
test of JPacman, comprising approximately 60,000 trace events (4Mb) before
reduction, are almost instantly ready after applying trace reduction techniques.

6 Case Study II: Auction Sniper

The second case study revolves around a system developed in strict test-driven
development (TDD) manner called Auction Sniper. Its test suite also makes
heavy use of mocking techniques in order to isolate unit tests. In contrast to the
first case study, where we compare the test relations with a conceptual mapping
of an expert, in this case study we investigate the usefulness of the technique
to help an outsider understand test relations (RQ2). In addition, we investigate
how our technique can cope with the influence of mocking techniques (RQ3).

Auction Sniper is an application which allows to automatically bid in auc-
tions. Auction Sniper watches different auctions and increases the bid in case a
higher bid of another bidder arrived until the auction closes or a certain limit
has been reached. This system is used as an example in the book “Growing
Object-Oriented Software, Guided by Tests” by Freeman et al. [6] to describe
TDD techniques. The software and the related tests are explained in detail in
this book and are publicly available9. The system comprises approximately 2,000
lines of code. The test suite has 1,240 lines of code, which constitute 37 unit tests,
6 end-to-end tests and 2 integration tests.

6.1 Obtaining an Initial Understanding

We analyzed the book and derived an initial understanding of the relations
between end-to-end tests and unit tests. The authors always start with an end-
to-end test, which kick-starts each development circle for a new functionality,
whereby the authors explain each end-to-end test “should have just enough new
requirements to force a manageable increase in functionality” [6]. Then, the

9 https://github.com/sf105/goos-code

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

10 TUD-SERG-2012-008

scaffold implementation of the new functionality follows. Prior to implementation
of detailed functionality, the authors develop and explain the necessary unit tests.

Based on this iterative development, we map each unit test case developed
within the cycle of an end-to-end (ETE) test as related to this ETE test. We
refine this first mapping by identifying the differences of the ETE test cases
based on their code. We mapped some unit tests not covered in the book based
on their name. In the following we summarize the functionality of the six ETE
tests. All unit test case names are given in Table 4 which can be helpful during
comprehension of the presented results.

The end-to-end tests. ETE tests 01 to 06 are actually enhancements of each
other, involving a lot of common functionality. The main steps are: 1. An auction
sells an item, 2. An auction sniper joins this auction. 3. Then, the auction closes,
4. Finally, the auction sniper shows the outcome of an auction.

In addition, test cases 02 to 05 place actual bids. Only test case 06 deviates
from the rest, as it does not close the auction and sends an invalid message.
Another main difference between the test cases is the state in which the sniper
is when the auction closes. In ETE01 the sniper is in the state “joining” when
the auction closes, which results in a lost auction. In ETE02 the sniper makes
a bid, but loses in the “bidding” state. In ETE03 the sniper makes a higher
bid, and wins in the “winning” state. ETE04 simply tests that a sniper can
bid on two items. The functionality of ETE03 and ETE04 is so similar that
we will treat them as one test subsequently. In ETE05 the sniper is already in
“losing” state before the auction closes, because of a stop price. ETE06 tests
failure reporting. The test sends an invalid message to the auction and causes
the application to throw and handle an error, but leaves the auction unclosed.

6.2 RQ2: Suitability of Measurements for Understanding Test
Relations

After measuring the similarity of the tests, we investigate each unit test via code
inspection, and assess the ranking and the mapping, which results in the final
conceptual mapping illustrated in Table 4. Based on this detailed investigation
we finally assess the rankings of the similarity measurements. Below we outline
correct identifications, surprises and deviations of the measurements with our
initial understanding by sketching groups of unit tests. We will see that the
automatic mapping reflects the final mapping derived after in-depth investigation
very accurately, and is thus useful for supporting an outsider in understanding
the test suite and its relations. The rankings and assessments for the best 5
results are illustrated in Table 2. For test case ETE06 we present the top 10
results to illustrate the effect of the relevancy support (see Table 3). A ranking
is indicated as optimal only in case it is highly related and ranked within the top
first results. Otherwise, results highly related, or results related are indicated as
okay (i.e., ok) in case they are within the first 5 results. On the other hand,
in case of a related result, which is not highly related, but is ranked before the
highly related ones, it is marked as not okay (i.e., nok).

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 11

Listing 1.2. Test case: isWonWhenAuctionClosesWhileWinning

@Test public void
isWonWhenAuctionClosesWhileWinning() {
assertEquals(SniperState.LOST, SniperState.JOINING.whenAuctionClosed());
assertEquals(SniperState.LOST, SniperState.BIDDING.whenAuctionClosed());
assertEquals(SniperState.WON, SniperState.WINNING.whenAuctionClosed()); }

Correct Identifications. Report Close of Auction. Unit test cases 02, 08,
and 09 revolve around reporting the closing of an auction, and are thus indeed
related to all ETE tests except to ETE06. Nevertheless, each of them provokes a
different state of the sniper when the auction closed event takes place. Therefore,
the mapping should be the strongest for ETE01 with test 02, ETE02 with test
08, ETE3/04 with test 11, and ETE05 with test 09. The measurements for these
relations accurately reflect those subtle differences.

Notifies Bid Details. Tests 33 and 34 are related to all of the ETE tests,
except for ETE01, which does not make a bid. As ETE02 exclusively focuses
on bidding, the relation is correctly identified as the strongest for this test. For
other tests they appear on ranks 6 and 7.

Mapping per Focus. Test case 03 which only bids correctly achieves the high-
est rank for test ETE02. Test case 10, related to winning an auction, maps to
ETE03/04. Tests 05, 06 and 09, which address losing before the auction is closed
are also correctly identified as highest-ranking results for ETE05. Test cases 35-
37, and 12-15 are testing the reporting of a failing auction. They are correctly
ranked as highly related to ETE06. ETE06 is a good example to demonstrate
the impact of the relevancy support based on occurrence, described in Section
3.1. Test cases 33 and 34 share more steps with ETE06 than for example test
cases 35 and 37. Both achieve just a similarity ranking of 0.2. Nevertheless, tests
35 and 37 reflect much stronger the focus of ETE06. Because 35 and 37 are never
indicated as related to any other ETE test, the relevancy support pushes them
to the top results. The new ranking of, for example test 35, is calculated as its
similarity divided by the number of times it has been ranked as a result among
all tests (i.e., 0.2 divided by 1/6).

Surprises. Winning and State Transitions. A surprise was the ranking of test
case 20 “isWonWhenAuctionClosesWhileWinning” within the results of ETE01,
as the name suggests it is rather related to winning (i.e., ETE03/04). Inspecting
the code, illustrated in Listing 1.2, reveals that the name is misleading as it tests
different auction outcomes. Two times the auction is lost, contrary to the name,
and it also triggers the rarely addressed state of ETE01 (i.e., “joining” when the
auction is closed). Test case 18 also triggers the transition between each stage
and therefore should have a low relation to each of the test cases.

Not bidding, bidding and losing. Test cases 05 and 06, contrary to their name
suggestions, do place bids and lose and are therefore also related to other test
cases than ETE06. Actually only test case 32 does not make a bid, which is
correctly mapped to ETE01 and gets low ratings for the other tests. Since test
case 06 also reaches the winning state before losing, the indicated relation to
ETE03/04 in understandable.

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

12 TUD-SERG-2012-008

ETE 01 ETE 02 ETE 03 & 04 ETE 05
test sim avg match test sim avg match test sim avg match test sim avg match
02 1.20 1.73 optimal 03 0.55 1.95 optimal 11 0.64 3.15 optimal 05 0.55 1.95 optimal
09 0.67 2.50 ok 08 0.55 2.88 optimal 06 0.55 2.13 ok 06 0.55 2.13 optimal
08 0.67 2.88 ok 11 0.45 3.15 nok 08 0.45 2.88 ok 09 0.55 2.50 optimal
11 0.67 3.15 ok 33 0.44 1.85 ok 10 0.44 1.57 ok 08 0.45 2.88 ok
20 0.50 0.61 ok 34 0.44 1.85 ok 15 0.44 1.77 ok 11 0.45 3.15 ok

Table 2. Top 5 similarity rankings for ETE01 to ETE05

Defects and a Failing Auction. We expected test cases 21, 22 to be related
to ETE06. But, tests 21 and 22 create a different failure as they put the system
in a faulty state and assert a specific exception to be thrown. Such a behavior
is not triggered in the end-to-end test, and consequently the non-appearance of
those test cases for any ETE is correct.

Deviations. Reporting winning. Test case 11, which reports that an auction
has been won after closing is ranked as the third result for ETE02 even though
this end-to-end test addresses losing. The common events, such as starting an
auction, bidding for an item and closing an auction dominate the ranking.

Additional Lessons Learned. Common functionality. Some functionality is
common to all tests. For example, tests of the class “SniperTablesModelTest”
check the rendering of the user interface. Tests 01, 16, and 17 trigger common
functionality such as adding a sniper and listeners. Such trace events are reduced
and can yield to empty test cases. Traces reduced to empty traces are marked
as common functionality in the ranking.

6.3 RQ3: Handling Mocking

The test suite of Auction Sniper makes heavy use of the mocking library JMock.
Without explicitly addressing mocked types during the analysis test cases in-
volving mocked classes are ranked very low or as unrelated even though they
are highly related. For example, without the mockery aspect test case 35 is not
linked to test ETE06 as the runtime types differ. By addressing mockery classes
as described in Section 2.2 we can correctly identify test relations.

7 Discussion

Lessons learned and limitations. Separation of Set-up and Tear-down. Con-
sistent usage of set-up and tear-down methods improves the similarity results,
as it helps in revealing the core functionality and focus of test cases. Test suites
which a priori do not use set-up and tear-down methods to structure their test
might yield less accurate results.

ETE 06
test sim avg match test sims avg match
12 0.50 1.59 optimal 13 1.20 0.20 optimal
15 0.50 1.77 optimal 35 1.20 0.20 optimal
14 0.40 1.22 optimal 36 1.20 0.20 optimal
33 0.40 1.85 ok 37 0.60 0.10 optimal
34 0.40 1.85 ok 12 0.60 1.59 optimal
03 0.40 1.95 ok 15 0.60 1.77 optimal
05 0.40 1.95 ok 14 0.48 1.22 optimal
06 0.40 2.13 ok 33 0.48 1.85 ok
10 0.30 1.57 nok 34 0.48 1.85 ok
08 0.30 2.88 nok 03 0.48 1.95 ok

Table 3. Similarity rankings for ETE06 with and without support

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 13

Test Case Name Test Case Relation
sniperJoinsAuctionUntilAuctionCloses – ETE01
notifiesAuctionClosedWhenCloseMessageReceived ≡ 32 highly related
reportsLostWhenAuctionClosesImmediately ≡ 02 highly related
isWonWhenAuctionClosesWhileWinning ≡ 20 related
reportAuctionClosesX ≡ 08, 09, 11 related
sniperMakesAHigherBidButLoses – ETE02
reportsLostIfAuctionClosesWhenBidding ≡ 08 highly related
bidsHigherAndReportsBiddingWhenNewPriceArrives ≡ 03 highly related
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice ≡ 05 related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ≡ 06 related
reportAuctionClosesX ≈ 09, 11 related
sniperWinsAnAuctionByBiddingHigher – ETE03 and sniperBidsForMultipleItems – ETE04
reportsWonIfAuctionClosesWhenWinning ≡ 11 highly related
reportsIsWinningWhenCurrentPriceComesFromSniper ≡ 10 highly related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ≡ 06 related
reportAuctionClosesX ≡ 08, 09 related
sniperLosesAnAuctionWhenThePriceIsTooHigh – ETE05
reportsLostIfAuctionClosesWhenLosing ≡ 09 highly related
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice ≡ 05 highly related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ≡ 06 highly related
doesNotBidAndReportsLosingIfFirstPriceIsAboveStopPrice ≡ 04 highly related
continuesToBeLosingOnceStopPriceHasBeenReached ≡ 07 highly related
(reportAuctionClosesX) ≡ 08, 11 related
sniperReportsInvalidAuctionMessageAndStopsRespondingToEvents – ETE06
notifiesAuctionFailedWhenBadMessageReceived ≡ 35 highly related
notifiesAuctionFailedWhenEventTypeMissing ≡ 36 highly related
writesMessageTranslationFailureToLog ≡ 37 highly related
reportsFailedIfAuctionFailsWhenBidding ≡ 12 highly related
reportsFailedIfAuctionFailsImmediately ≡ 13 highly related
reportsFailedIfAuctionFailsWhenLosing ≡ 14 highly related
reportsFailedIfAuctionFailsWhenWinning ≡ 15 highly related
ETE 01 – 06
transitionsBetweenStates ≡ 18 related
ETE 02 – 06
bidsHigherAndReportsBiddingWhenNewPriceArrives ≡ 03 related
ETE 02 - 05
notifiesBidDetailsWhenCurrentPriceMessageReceivedFromOtherBidder ≡ 33 related
notifiesBidDetailsWhenCurrentPriceMessageReceivedFromSniper ≡ 34 related
Common functionality and UI
UI related tests (e.g. test of class SniperTablesModelTest) ≡ 23− 31 related
Listeners and common states ≡ 01, 16, 17 related
Functionality not addressed by any ETE
defectIfAuctionClosesWhenWon ≡ 21 unrelated
defectIfAuctionClosesWhenLost ≡ 22 unrelated

Table 4. Final conceptual mapping of end-to-end tests to unit tests

Performance. The performance of the approach is an important criterion
especially if the size and complexity of the system under study increases. During
our two case studies, we experienced no performance issues with the systems
under study. For larger systems further trace reduction techniques might become
necessary [3]. On the other hand, performance depends more on the size of the
traces (i.e., amount of functionality covered by a test), than on the number of
tests. Test case size is independent of the complexity and size of the systems.

Future work. Assertions. At this stage, our technique does not address the
meaning of assertions. As future work, we would like to investigate how the
meaning of assertions can influence the ranking of a test case.

Test suite quality inspection. The discovered relations do not only help to
see similarity of test cases, they also help to assess the quality of the test suite

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

14 TUD-SERG-2012-008

and discover areas for improvement, e.g., identifying unit test cases that do too
much, or identifying behavior which is not addressed by any end-to-end test.

User study. We aim to further investigate the usefulness of our tool through
a user study that allows actual developers and testers to work with it.

Threats to validity. Concerning external validity, our case studies address
relatively small Java systems. Scalability to larger case studies is a key concern
that we aim to address in our future work, making use of case studies from the
Eclipse plug-in domain we used in earlier studies (Mylyn, EGit) [8].

With respect to internal validity, the main threat consists of the manually
obtained conceptual mapping. Creating such a mapping is inherently subjective,
as illustrated by the process we applied to the Auction Sniper case study.

In order to reduce threats to reliability and to improve repeatability, both
our tool and the systems under study are available to other researchers.

8 Related Work

An initial catalogue of test smells negatively affecting understanding was pre-
sented by Van Deursen et al., together with a set of corresponding refactor-
ings [5]. Later, a thorough treatment of the topic of refactoring test code was
provided by Meszaros [10]. Van Rompaey et al. continued this line of work by
studying automated analysis of these smells [13].

Tools for assisting in the understanding of test suites have been proposed
by Cornelissen et al., who present a visualization of test suites as sequence di-
agrams [2]. Greiler et al. propose higher level visualizations, aimed at assisting
developers in seeing plug-in interactions addressed by their test suites [8].

Galli et al. have developed a tool to order broken unit tests [7]. It is their
aim to create a hierarchical relation between broken unit tests, so that the most
specific unit test that fails can be inspected first. In essence, their technique
allows to steer and optimize the debugging process.

Rothermel and Harrold discuss safe regression testing techniques in [11]; re-
gression test selection techniques try to find those tests that are directly respon-
sible for testing the changed parts of a program and subsequently only run these
tests. Hurdugaci and Zaidman operationalize this in the IDE for unit tests [9].

Yoo et al. cluster test cases based on their similarity to support experts in
test case prioritisation, which outperforms coverage-based prioritisation [15].

9 Conclusion

In this paper we showed how a combination of dynamic analysis and the shared
word count metric can be used to establish relations between end-to-end and unit
tests in order to assist developers in their (test suite) maintenance activities.

We evaluated our test connection mining techniques in two case studies, by
elaborating the usefulness of the approach to improve understanding. We saw
that after using the proposed trace reduction techniques our approach produces
accurate test mappings, which can help to 1) identify relevant tests, 2) under-
stand the functionality of a test by describing high-level test cases with related
unit test cases and 3) reveal blank spots in the investigated unit test suites.

SERG Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding

TUD-SERG-2012-008 15

Contributions. The contributions of this paper are 1) tracing and trace
reduction techniques tailored for handling test code, including test specific events
such as set-up, tear-down and mocking 2) an assessment of the usefulness of the
rankings based on two case studies, 3) the development of a Test Similarity
Correlator, a framework for mining test connections.

References

1. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional (Oct 1999)

2. Cornelissen, B., van Deursen, A., Moonen, L., Zaidman, A.: Visualizing testsuites
to aid in software understanding. In: Proc. of the European Conference on Software
Maintenance and Reengineering (CSMR). pp. 213–222. IEEE CS (2007)

3. Cornelissen, B., Moonen, L., Zaidman, A.: An assessment methodology for trace
reduction techniques. In: Proc. Int’l Conf. Software Maintenance (ICSM). pp. 107–
116. IEEE CS (2008)

4. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Trans-
actions on Software Engineering 35(5), 684–702 (2009)

5. van Deursen, A., Moonen, L., van Den Bergh, A., Kok, G.: Refactoring test code.
In: Extreme Programming Perspectives. pp. 141–152. Addison Wesley (2002)

6. Freeman, S., Pryce, N.: Growing Object-Oriented Software, Guided by Tests.
Addison-Wesley Professional, 1st edn. (2009)

7. Galli, M., Lanza, M., Nierstrasz, O., Wuyts, R.: Ordering broken unit tests for
focused debugging. In: Int’l Conf. Softw. Maintenance (ICSM). pp. 114–123. IEEE
(2004)

8. Greiler, M., Groß, H.G., van Deursen, A.: Understanding plug-in test suites from
an extensibility perspective. In: Proceedings Working Conference on Reverse En-
gineering (WCRE). pp. 67–76. IEEE CS (2010)

9. Hurdugaci, V., Zaidman, A.: Aiding developers to maintain developer tests. In:
Conf. Softw. Maintenance and Reengineering (CSMR). pp. 11–20. IEEE CS (2012)

10. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley (2007)
11. Rothermel, G., Harrold, M.: Empirical studies of a safe regression test selection

technique. IEEE Transactions on Software Engineering 24(6), 401–419 (1998)
12. Stephen, G.A.: String searching algorithms. World Scientific Publishing Co. (1994)
13. Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M.: On the detection of

test smells: A metrics-based approach for general fixture and eager test. IEEE
Transactions on Software Engineering 33(12), 800–817 (2007)

14. Weiss, S., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods
for Analyzing Unstructured Information. SpringerVerlag (2004)

15. Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve effective
and scalable prioritisation incorporating expert knowledge. In: Proceedings of the
eighteenth international symposium on Software testing and analysis. pp. 201–212.
ISSTA ’09, ACM, New York, NY, USA (2009)

16. Zaidman, A., Van Rompaey, B., van Deursen, A., Demeyer, S.: Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Empir. Softw. Eng. 16(3), 325–364 (2011)

Greiler, van Deursen & Zaidman – Measuring Test Case Similarity to Support Test Suite Understanding SERG

16 TUD-SERG-2012-008

TUD-SERG-2012-008
ISSN 1872-5392 SERG

