Abstract
We present a novel approach for the rigid registration of pre-operative magnetic resonance to intra-operative ultrasound in the context of image-guided neurosurgery. Our framework proposes the maximization of gradient orientation alignment in locations with minimal uncertainty of the orientation estimates, permitting fast and robust performance. We evaluated our method on 14 clinical neurosurgical cases of patients with brain tumors, including low-grade and high-grade gliomas. We demonstrate processing times as small as 7 seconds and improved performance with relation to competing intensity-based methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anonymous: Online database of clinical MR and ultrasound images of brain tumours. Submitted to Medical Physics (October 2011)
Arbel, T., Morandi, X., Comeau, R.M., Collins, D.L.: Automatic Non-linear MRI-Ultrasound Registration for the Correction of Intra-operative Brain Deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 913–922. Springer, Heidelberg (2001)
Brooks, R., Collins, D.L., Morandi, X., Arbel, T.: Deformable Ultrasound Registration without Reconstruction. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1023–1031. Springer, Heidelberg (2008)
Dai, Y., Tian, J., Dong, D., Yan, G., Zheng, H.: Real-time visualized freehand 3d ultrasound reconstruction based on gpu. IEEE Transactions on Information Technology in Biomedicine 14(6), 1338–1345 (2010)
De Nigris, D., Mercier, L., Del Maestro, R., Louis Collins, D., Arbel, T.: Hierarchical Multimodal Image Registration Based on Adaptive Local Mutual Information. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 643–651. Springer, Heidelberg (2010)
Haber, E., Modersitzki, J.: Beyond mutual information: A simple and robust alternative. In: Meinzer, H.P., Handels, H., Horsch, A., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2005. Informatik aktuell. Springer (2005)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)
Ji, S., Wu, Z., Hartov, A., Roberts, D.W., Paulsen, K.D.: Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Medical Physics 35(10), 4612–4624 (2008)
Karaçali, B.: Information theoretic deformable registration using local image information. IJCV 72, 219–237 (2007)
Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29(1), 196–205 (2010)
Letteboer, M., Willems, P., Viergever, M., Niessen, W.: Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Transactions on Biomedical Engineering 52(2), 268–276 (2005)
Mercier, L., Fonov, V., Haegelen, C., Del Maestro, R., Petrecca, K., Collins, D.: Comparing two approaches to rigid registration of three-dimensional ultrasound and magnetic resonance images for neurosurgery. International Journal of Computer Assisted Radiology and Surgery, 1–12 (2011)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)
Roche, A., Pennec, X., Malandain, G., Ayache, N.: Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Trans. Med. Imaging 20, 1038–1049 (2001)
Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic ct-ultrasound registration for diagnostic imaging and image-guided intervention. Medical Image Analysis 12(5), 577–585 (2008)
Zhang, W., Noble, J., Brady, J.: Adaptive Non-rigid Registration of Real Time 3D Ultrasound to Cardiovascular MR Images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 50–61. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Nigris, D., Collins, D.L., Arbel, T. (2012). Fast and Robust Registration Based on Gradient Orientations: Case Study Matching Intra-operative Ultrasound to Pre-operative MRI in Neurosurgery. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2012. Lecture Notes in Computer Science, vol 7330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30618-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-30618-1_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30617-4
Online ISBN: 978-3-642-30618-1
eBook Packages: Computer ScienceComputer Science (R0)