Skip to main content

Fast and Robust Registration Based on Gradient Orientations: Case Study Matching Intra-operative Ultrasound to Pre-operative MRI in Neurosurgery

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7330))

Abstract

We present a novel approach for the rigid registration of pre-operative magnetic resonance to intra-operative ultrasound in the context of image-guided neurosurgery. Our framework proposes the maximization of gradient orientation alignment in locations with minimal uncertainty of the orientation estimates, permitting fast and robust performance. We evaluated our method on 14 clinical neurosurgical cases of patients with brain tumors, including low-grade and high-grade gliomas. We demonstrate processing times as small as 7 seconds and improved performance with relation to competing intensity-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anonymous: Online database of clinical MR and ultrasound images of brain tumours. Submitted to Medical Physics (October 2011)

    Google Scholar 

  2. Arbel, T., Morandi, X., Comeau, R.M., Collins, D.L.: Automatic Non-linear MRI-Ultrasound Registration for the Correction of Intra-operative Brain Deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 913–922. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Brooks, R., Collins, D.L., Morandi, X., Arbel, T.: Deformable Ultrasound Registration without Reconstruction. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1023–1031. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Dai, Y., Tian, J., Dong, D., Yan, G., Zheng, H.: Real-time visualized freehand 3d ultrasound reconstruction based on gpu. IEEE Transactions on Information Technology in Biomedicine 14(6), 1338–1345 (2010)

    Article  Google Scholar 

  5. De Nigris, D., Mercier, L., Del Maestro, R., Louis Collins, D., Arbel, T.: Hierarchical Multimodal Image Registration Based on Adaptive Local Mutual Information. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 643–651. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Haber, E., Modersitzki, J.: Beyond mutual information: A simple and robust alternative. In: Meinzer, H.P., Handels, H., Horsch, A., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2005. Informatik aktuell. Springer (2005)

    Google Scholar 

  7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)

    Article  Google Scholar 

  8. Ji, S., Wu, Z., Hartov, A., Roberts, D.W., Paulsen, K.D.: Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Medical Physics 35(10), 4612–4624 (2008)

    Article  Google Scholar 

  9. Karaçali, B.: Information theoretic deformable registration using local image information. IJCV 72, 219–237 (2007)

    Article  Google Scholar 

  10. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  11. Letteboer, M., Willems, P., Viergever, M., Niessen, W.: Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Transactions on Biomedical Engineering 52(2), 268–276 (2005)

    Article  Google Scholar 

  12. Mercier, L., Fonov, V., Haegelen, C., Del Maestro, R., Petrecca, K., Collins, D.: Comparing two approaches to rigid registration of three-dimensional ultrasound and magnetic resonance images for neurosurgery. International Journal of Computer Assisted Radiology and Surgery, 1–12 (2011)

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  14. Roche, A., Pennec, X., Malandain, G., Ayache, N.: Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Trans. Med. Imaging 20, 1038–1049 (2001)

    Article  Google Scholar 

  15. Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic ct-ultrasound registration for diagnostic imaging and image-guided intervention. Medical Image Analysis 12(5), 577–585 (2008)

    Article  Google Scholar 

  16. Zhang, W., Noble, J., Brady, J.: Adaptive Non-rigid Registration of Real Time 3D Ultrasound to Cardiovascular MR Images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 50–61. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Nigris, D., Collins, D.L., Arbel, T. (2012). Fast and Robust Registration Based on Gradient Orientations: Case Study Matching Intra-operative Ultrasound to Pre-operative MRI in Neurosurgery. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2012. Lecture Notes in Computer Science, vol 7330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30618-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30618-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30617-4

  • Online ISBN: 978-3-642-30618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics