Abstract
Two typical challenges in the energy aware tasking scheduling are (1) minimizing energy consumption with execution time constraint and (2) minimizing task execution time with energy consumption constraint. This chapter focuses on the later challenge. It is very important to efficiently schedule tasks in mobile devices and sensor networks that have limited power. The goal is to cooperatively complete a set of tasks among diverse computing resources with given energy. Traditional scheduling algorithms, such as list scheduling, are not very efficient for this scheduling problem. Linear programming optimization method does not fit well since it is a non-linear problem. An enhanced genetic algorithm can solve this problem effectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cabusao, G., Mochizuki, M., Mashiko, K., Kobayashi, T., Singh, R., Nguyen, T., Wu, P.: Data center energy conservation utilizing a heat pipe based ice storage system. In: 2010 IEEE CPMT Symposium Japan, pp. 1–4 (2010), doi:10.1109/CPMTSYMPJ.2010.5680287
Chang, P.C., Wu, I.W., Shann, J.J., Chung, C.P.: ETAHM: An energy-aware task allocation algorithm for heterogeneous multiprocessor. In: 45th ACM/IEEE Design Automation Conference, pp. 776–779 (2008)
Church, K., Greenberg, A., Hamilton, J.: On delivering embarrassingly distributed cloud services. In: ACM HotNets VII (2008), http://www.techrepublic.com/whitepapers/on-delivering-embarrassingly-distributed-cloud-services/2388125 (accessed May 2011)
Consortium for School Networking Initiative: Some Facts About Computer Energy Use (2010), http://www.cosn.org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/Default.aspx (accessed July 2011)
Eriksson, R., Olsson, B.: On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes, Congress. Evolutionary Computation 2, 1293–1300 (2004)
Hamann, H.F., López, V., Stepanchuk, A.: Thermal zones for more efficient data center energy management. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–6 (2010), doi:10.1109/ITHERM.2010.5501332
Hang, Y., Kuo, J., Ahmad, I.: Energy efficiency in data centers and cloud-based multimedia services: An overview and future directions. In: 2010 International Green Computing Conference, pp. 375–382 (2010), doi:10.1109/GREENCOMP.2010.5598292
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press (1992)
Iyengar, M., Schmidt, R., Caricari, J.: Reducing energy usage in data centers through control of Room Air Conditioning units. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–11 (2010), doi:10.1109/ITHERM.2010.5501418
Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: Data Center Energy-Efficient Network-Aware Scheduling. In: 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom) Green Computing and Communications (GreenCom), pp. 69–75 (2010), doi:10.1109/GreenCom-CPSCom.2010.31
Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Springer (2005)
Koduru, P., Dong, Z., Das, S., Welch, S., Roe, J., Charbit, E.: A Multi objective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks. IEEE Trans. Evolutionary Computation 12(5), 572–590 (2008)
Laszewski, G., Von Wang, L., Younge, A.J., He, X.: Power-aware scheduling of virtual machines in DVFS-enabled clusters. In: IEEE Intl. Conf. on Cluster Computing and Workshops, pp. 1–10 (2009), doi:10.1109/CLUSTR.2009.5289182
Li, K.: Performance Analysis of Power-Aware Task Scheduling Algorithms on Multiprocessor Computers with Dynamic Voltage and Speed. IEEE Trans. on Parallel and Distributed Systems 19(11), 1484–1497 (2008), doi:10.1109/TPDS.2008.122
Li, Y., Liu, Y., Qian, D.: A Heuristic Energy-aware Scheduling Algorithm for Heterogeneous Clusters. In: 2009 15th Intl. Conf. on Parallel and Distributed Systems (ICPADS), pp. 407–413 (2009), doi:10.1109/ICPADS.2009.33
Liu, Y., Yang, H., Luo, R., Wang, H.: Combining Genetic Algorithms Based Task Mapping and Optimal Voltage Selection for Energy-Efficient Distributed System Synthesis. In: 2006 Intl. Conf. on Communications, Circuits and System, vol. 3, pp. 2074–2078 (2006), doi:10.1109/ICCCAS.2006.285087
Miao, L., Qi, Y., Hou, D., Dai, Y.: Energy-Aware Scheduling Tasks on Chip Multiprocessor. In: Third International Conference on Natural Computation, vol. 4, pp. 319–323 (2007), doi:10.1109/ICNC.2007.356
Miao, L., Qi, Y., Hou, D., Dai, Y.H., Shi, Y.: “A multi-objective hybrid genetic algorithm for energy saving task scheduling in CMP system. In: IEEE Intl. Conf. on Systems, Man and Cybernetics, pp. 197–201 (2008), doi:10.1109/ICSMC.2008.4811274
Noman, N., Iba, H.: Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Trans. Evolutionary Computation 12(1), 107–125 (2008)
Page, A., Naughton, J.: Dynamic Task Scheduling using Genetic Algorithms for Heterogeneous Distributed Computing. In: 19th IEEE Intl. Conf. on Parallel and Distributed Processing (2005), doi:10.1109/IPDPS.2005.184
Random.org (2011), http://www.random.org (accessed July 2011)
Shen, G., Zhang, Y.-Q.: A Shadow Price Guided Genetic Algorithm for Energy Aware Task Scheduling on Cloud Computers. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 522–529. Springer, Heidelberg (2011), doi:10.1007/978-3-642-21515-5-62
Shen, G., Zhang, Y.Q.: A New Evolutionary Algorithm Using Shadow Price Guided Operators. Applied Soft Computing 11(2), 1983–1992 (2011), doi:10.1016/j.asoc.2010.06.014
Shen, G., Zhang, Y.Q.: An Evolutionary Linear Programming Algorithm for Solving the Stock Reduction Problem. International Journal of Computer Applications in Technology (IJCAT) 44(6) (2012)
Tian, L., Arslan, T.: A genetic algorithm for energy efficient device scheduling in real-time systems. In: 2003 Congress on Evolutionary Computation, pp. 242–247 (2003), doi:10.1109/CEC.2003.1299581
U.S. Energy Information Administration: Independent Statistic and Analysis, Renewable Energy Consumption and Electricity Preliminary 2006 Statistics (2006), http://www.eia.doe.gov/cneaf/solar.renewables/page/prelim_trends/rea_prereport.html (accessed July 2011)
US Environmental Protection Agency: EPA Report on Server and Data Center Energy Efficiency (August 2007), http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf (accessed July 2011)
Wang, L., Von Laszewski, G., Dayal, J., He, X., Furlani, T.R.: Thermal Aware Workload Scheduling with Backfilling for Green Data Centers. In: the 28th IEEE Intl. Conf. on Performance Computing and Communications, pp. 289–296 (2009), doi:10.1109/PCCC.2009.5403821
Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards Energy Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster with DVFS. In: 2010 10th IEEE/ACM Intl. Conf. on Cluster, Cloud and Grid Computing (CCGrid), pp. 368–377 (2010), doi:10.1109/CCGRID.2010.19
Wikipedia: Instructions Per Second (2011), http://www.en.wikipedia.org/wiki/Instructions_per_second (accessed July 2011)
Xie, Y., Wang, Z., Wei, S.: An efficient algorithm for non-preemptive periodic task scheduling under energy constraints. In: 6th Intl. Conf. on ASIC, pp. 128–131 (2005), doi:10.1109/ICASIC.2005.1611282
Yahoo Green: Sustainable Energy 101 (2011), http://green.yahoo.com/global-warming/globalgreen-140/sustainable-energy-101.html (accessed July 2011)
Yang, K., Liu, X.: Improving the Performance of the Pareto Fitness Genetic Algorithm for Multi-Objective Discrete Optimization. In: Intl. Symposium Computational Intelligence and Design, vol. 2, pp. 394–397 (2008)
Yuen, S., Chow, C.: A Genetic Algorithm That Adaptively Mutates and Never Revisits. IEEE Trans. Evolutionary Computation 13(2), 454–472 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shen, G., Zhang, Y. (2013). Power Consumption Constrained Task Scheduling Using Enhanced Genetic Algorithms. In: Khan, S., Kołodziej, J., Li, J., Zomaya, A. (eds) Evolutionary Based Solutions for Green Computing. Studies in Computational Intelligence, vol 432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30659-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-30659-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30658-7
Online ISBN: 978-3-642-30659-4
eBook Packages: EngineeringEngineering (R0)