Skip to main content

Power Consumption Constrained Task Scheduling Using Enhanced Genetic Algorithms

  • Chapter
Evolutionary Based Solutions for Green Computing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 432))

  • 918 Accesses

Abstract

Two typical challenges in the energy aware tasking scheduling are (1) minimizing energy consumption with execution time constraint and (2) minimizing task execution time with energy consumption constraint. This chapter focuses on the later challenge. It is very important to efficiently schedule tasks in mobile devices and sensor networks that have limited power. The goal is to cooperatively complete a set of tasks among diverse computing resources with given energy. Traditional scheduling algorithms, such as list scheduling, are not very efficient for this scheduling problem. Linear programming optimization method does not fit well since it is a non-linear problem. An enhanced genetic algorithm can solve this problem effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cabusao, G., Mochizuki, M., Mashiko, K., Kobayashi, T., Singh, R., Nguyen, T., Wu, P.: Data center energy conservation utilizing a heat pipe based ice storage system. In: 2010 IEEE CPMT Symposium Japan, pp. 1–4 (2010), doi:10.1109/CPMTSYMPJ.2010.5680287

    Google Scholar 

  2. Chang, P.C., Wu, I.W., Shann, J.J., Chung, C.P.: ETAHM: An energy-aware task allocation algorithm for heterogeneous multiprocessor. In: 45th ACM/IEEE Design Automation Conference, pp. 776–779 (2008)

    Google Scholar 

  3. Church, K., Greenberg, A., Hamilton, J.: On delivering embarrassingly distributed cloud services. In: ACM HotNets VII (2008), http://www.techrepublic.com/whitepapers/on-delivering-embarrassingly-distributed-cloud-services/2388125 (accessed May 2011)

  4. Consortium for School Networking Initiative: Some Facts About Computer Energy Use (2010), http://www.cosn.org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/Default.aspx (accessed July 2011)

  5. Eriksson, R., Olsson, B.: On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes, Congress. Evolutionary Computation 2, 1293–1300 (2004)

    Google Scholar 

  6. Hamann, H.F., López, V., Stepanchuk, A.: Thermal zones for more efficient data center energy management. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–6 (2010), doi:10.1109/ITHERM.2010.5501332

    Google Scholar 

  7. Hang, Y., Kuo, J., Ahmad, I.: Energy efficiency in data centers and cloud-based multimedia services: An overview and future directions. In: 2010 International Green Computing Conference, pp. 375–382 (2010), doi:10.1109/GREENCOMP.2010.5598292

    Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press (1992)

    Google Scholar 

  10. Iyengar, M., Schmidt, R., Caricari, J.: Reducing energy usage in data centers through control of Room Air Conditioning units. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–11 (2010), doi:10.1109/ITHERM.2010.5501418

    Google Scholar 

  11. Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: Data Center Energy-Efficient Network-Aware Scheduling. In: 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom) Green Computing and Communications (GreenCom), pp. 69–75 (2010), doi:10.1109/GreenCom-CPSCom.2010.31

    Google Scholar 

  12. Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Springer (2005)

    Google Scholar 

  13. Koduru, P., Dong, Z., Das, S., Welch, S., Roe, J., Charbit, E.: A Multi objective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks. IEEE Trans. Evolutionary Computation 12(5), 572–590 (2008)

    Article  Google Scholar 

  14. Laszewski, G., Von Wang, L., Younge, A.J., He, X.: Power-aware scheduling of virtual machines in DVFS-enabled clusters. In: IEEE Intl. Conf. on Cluster Computing and Workshops, pp. 1–10 (2009), doi:10.1109/CLUSTR.2009.5289182

    Google Scholar 

  15. Li, K.: Performance Analysis of Power-Aware Task Scheduling Algorithms on Multiprocessor Computers with Dynamic Voltage and Speed. IEEE Trans. on Parallel and Distributed Systems 19(11), 1484–1497 (2008), doi:10.1109/TPDS.2008.122

    Article  Google Scholar 

  16. Li, Y., Liu, Y., Qian, D.: A Heuristic Energy-aware Scheduling Algorithm for Heterogeneous Clusters. In: 2009 15th Intl. Conf. on Parallel and Distributed Systems (ICPADS), pp. 407–413 (2009), doi:10.1109/ICPADS.2009.33

    Google Scholar 

  17. Liu, Y., Yang, H., Luo, R., Wang, H.: Combining Genetic Algorithms Based Task Mapping and Optimal Voltage Selection for Energy-Efficient Distributed System Synthesis. In: 2006 Intl. Conf. on Communications, Circuits and System, vol. 3, pp. 2074–2078 (2006), doi:10.1109/ICCCAS.2006.285087

    Google Scholar 

  18. Miao, L., Qi, Y., Hou, D., Dai, Y.: Energy-Aware Scheduling Tasks on Chip Multiprocessor. In: Third International Conference on Natural Computation, vol. 4, pp. 319–323 (2007), doi:10.1109/ICNC.2007.356

    Google Scholar 

  19. Miao, L., Qi, Y., Hou, D., Dai, Y.H., Shi, Y.: “A multi-objective hybrid genetic algorithm for energy saving task scheduling in CMP system. In: IEEE Intl. Conf. on Systems, Man and Cybernetics, pp. 197–201 (2008), doi:10.1109/ICSMC.2008.4811274

    Google Scholar 

  20. Noman, N., Iba, H.: Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Trans. Evolutionary Computation 12(1), 107–125 (2008)

    Article  Google Scholar 

  21. Page, A., Naughton, J.: Dynamic Task Scheduling using Genetic Algorithms for Heterogeneous Distributed Computing. In: 19th IEEE Intl. Conf. on Parallel and Distributed Processing (2005), doi:10.1109/IPDPS.2005.184

    Google Scholar 

  22. Random.org (2011), http://www.random.org (accessed July 2011)

  23. Shen, G., Zhang, Y.-Q.: A Shadow Price Guided Genetic Algorithm for Energy Aware Task Scheduling on Cloud Computers. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 522–529. Springer, Heidelberg (2011), doi:10.1007/978-3-642-21515-5-62

    Chapter  Google Scholar 

  24. Shen, G., Zhang, Y.Q.: A New Evolutionary Algorithm Using Shadow Price Guided Operators. Applied Soft Computing 11(2), 1983–1992 (2011), doi:10.1016/j.asoc.2010.06.014

    Article  Google Scholar 

  25. Shen, G., Zhang, Y.Q.: An Evolutionary Linear Programming Algorithm for Solving the Stock Reduction Problem. International Journal of Computer Applications in Technology (IJCAT) 44(6) (2012)

    Google Scholar 

  26. Tian, L., Arslan, T.: A genetic algorithm for energy efficient device scheduling in real-time systems. In: 2003 Congress on Evolutionary Computation, pp. 242–247 (2003), doi:10.1109/CEC.2003.1299581

    Google Scholar 

  27. U.S. Energy Information Administration: Independent Statistic and Analysis, Renewable Energy Consumption and Electricity Preliminary 2006 Statistics (2006), http://www.eia.doe.gov/cneaf/solar.renewables/page/prelim_trends/rea_prereport.html (accessed July 2011)

  28. US Environmental Protection Agency: EPA Report on Server and Data Center Energy Efficiency (August 2007), http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf (accessed July 2011)

  29. Wang, L., Von Laszewski, G., Dayal, J., He, X., Furlani, T.R.: Thermal Aware Workload Scheduling with Backfilling for Green Data Centers. In: the 28th IEEE Intl. Conf. on Performance Computing and Communications, pp. 289–296 (2009), doi:10.1109/PCCC.2009.5403821

    Google Scholar 

  30. Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards Energy Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster with DVFS. In: 2010 10th IEEE/ACM Intl. Conf. on Cluster, Cloud and Grid Computing (CCGrid), pp. 368–377 (2010), doi:10.1109/CCGRID.2010.19

    Google Scholar 

  31. Wikipedia: Instructions Per Second (2011), http://www.en.wikipedia.org/wiki/Instructions_per_second (accessed July 2011)

  32. Xie, Y., Wang, Z., Wei, S.: An efficient algorithm for non-preemptive periodic task scheduling under energy constraints. In: 6th Intl. Conf. on ASIC, pp. 128–131 (2005), doi:10.1109/ICASIC.2005.1611282

    Google Scholar 

  33. Yahoo Green: Sustainable Energy 101 (2011), http://green.yahoo.com/global-warming/globalgreen-140/sustainable-energy-101.html (accessed July 2011)

  34. Yang, K., Liu, X.: Improving the Performance of the Pareto Fitness Genetic Algorithm for Multi-Objective Discrete Optimization. In: Intl. Symposium Computational Intelligence and Design, vol. 2, pp. 394–397 (2008)

    Google Scholar 

  35. Yuen, S., Chow, C.: A Genetic Algorithm That Adaptively Mutates and Never Revisits. IEEE Trans. Evolutionary Computation 13(2), 454–472 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, G., Zhang, Y. (2013). Power Consumption Constrained Task Scheduling Using Enhanced Genetic Algorithms. In: Khan, S., Kołodziej, J., Li, J., Zomaya, A. (eds) Evolutionary Based Solutions for Green Computing. Studies in Computational Intelligence, vol 432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30659-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30659-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30658-7

  • Online ISBN: 978-3-642-30659-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics