Skip to main content

Engineering Graph Partitioning Algorithms

  • Conference paper
Experimental Algorithms (SEA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7276))

Included in the following conference series:

Abstract

The paper gives an overview of our recent work on balanced graph partitioning – partition the nodes of a graph into k blocks such that all blocks have approximately equal size and such that the number of cut edges is small. This problem has numerous applications for example in parallel processing. We report on a scalable parallelization and a number of improvements on the classical multi-level approach which leads to improved partitioning quality. This includes an integration of flow methods, improved local search, several improved coarsening schemes, repeated runs similar to the approaches used in multigrid solvers, and an integration into a distributed evolutionary algorithm. Overall this leads to a system that for many common benchmarks leads to both the best quality solution known and favorable tradeoffs between running time and solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fjallstrom, P.: Algorithms for graph partitioning: A survey. Linkoping Electronic Articles in Computer and Information Science 3(10) (1998)

    Google Scholar 

  2. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  3. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. Technical Report 00-018, University of Minnesota (2000)

    Google Scholar 

  4. Walshaw, C., Cross, M.: JOSTLE: Parallel Multilevel Graph-Partitioning Software – An Overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58. Civil-Comp Ltd. (2007) (invited chapter)

    Google Scholar 

  5. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a Scalable High Quality Graph Partitioner. In: 24th IEEE International Parallal and Distributed Processing Symposium (2010)

    Google Scholar 

  6. Osipov, V., Sanders, P.: n-Level Graph Partitioning. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010) see also arxiv preprint arXiv:1004.4024

    Chapter  Google Scholar 

  7. Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Sanders, P., Schulz, C.: Distributed Evolutionary Graph Partitioning. In: 12th Workshop on Algorithm Engineering and Experimentation (2011)

    Google Scholar 

  9. Soper, A., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimisation approach to graph-partitioning. Journal of Global Optimization 29(2), 225–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berger, M.J., Bokhari, S.H.: A partitioning strategy for pdes across multiprocessors. In: ICPP, pp. 166–170 (1985)

    Google Scholar 

  12. Manne, F., Bisseling, R.H.: A Parallel Approximation Algorithm for the Weighted Maximum Matching Problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 708–717. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: International Parallel & Distributed Processing Symposium (2006)

    Google Scholar 

  14. Maue, J., Sanders, P.: Engineering Algorithms for Approximate Weighted Matching. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Drake, D., Hougardy, S.: A simple approximation algorithm for the weighted matching problem. Information Processing Letters 85, 211–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pellegrini, F.: Scotch home page, http://www.labri.fr/pelegrin/scotch

  17. Fiduccia, C.M., Mattheyses, R.M.: A Linear-Time Heuristic for Improving Network Partitions. In: 19th Conference on Design Automation, pp. 175–181 (1982)

    Google Scholar 

  18. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transportation Science (to appear, 2012)

    Google Scholar 

  19. Birn, M., Holtgrewe, M., Sanders, P., Singler, J.: Simple and fast nearest neighbor search. In: 11th Workshop on Algorithm Engineering and Experiments, ALENEX (2010)

    Google Scholar 

  20. Osipov, V., Sanders, P.: n-Level Graph Partitioning. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Dementiev, R., Sanders, P., Schultes, D., Sibeyn, J.: Engineering an external memory minimum spanning tree algorithm. In: IFIP TCS, Toulouse, pp. 195–208 (2004)

    Google Scholar 

  22. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Annals of Operations Research 131(1), 325–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Safro, I., Sanders, P., Schulz, C.: Advanced Coarsening Schemes for Graph Partitioning. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 369–380. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Osipov, V., Sanders, P., Schulz, C. (2012). Engineering Graph Partitioning Algorithms. In: Klasing, R. (eds) Experimental Algorithms. SEA 2012. Lecture Notes in Computer Science, vol 7276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30850-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30850-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30849-9

  • Online ISBN: 978-3-642-30850-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics