Skip to main content

Implementation and Comparison of Heuristics for the Vertex Cover Problem on Huge Graphs

  • Conference paper
Experimental Algorithms (SEA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7276))

Included in the following conference series:

  • 1563 Accesses

Abstract

We present in this paper an experimental study of six heuristics for a well-studied NP-complete graph problem: the vertex cover. These algorithms are adapted to process huge graphs. Indeed, executed on a current laptop computer, they offer reasonable CPU running times (between twenty seconds and eight hours) on graphs for which sizes are between 200 ·106 and 100 ·109 vertices and edges.

We have run algorithms on specific graph families (we propose generators) and also on random power law graphs. Some of these heuristics can produce good solutions. We give here a comparison and an analysis of results obtained on several instances, in terms of quality of solutions and complexity, including running times.

Work partially supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://todo.lamsade.dauphine.fr/spip.php?article39

  2. Abello, J., Pardalos, P.M., Resende, M.G.C.: On Maximum Clique Problems in Very Large Graphs. In: External Memory Algorithms. DIMACS, vol. 50, pp. 119–130. American Mathematical Society (1999)

    Google Scholar 

  3. Abello, J., Pardalos, P.M., Resende, M.G.C.(eds.): Handbook of Massive Data Sets. Massive Computing, vol. 4. Springer (2002)

    Google Scholar 

  4. Ajwani, D.: Design, Implementation and Experimental Study of External Memory BFS Algorithms. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (2005)

    Google Scholar 

  5. Alber, J., Dorn, F., Niedermeier, R.: Experimental Evaluation of a Tree Decomposition-Based Algorithm for Vertex Cover on Planar Graphs. Discrete Applied Mathematics 145, 219–231 (2004)

    Article  MathSciNet  Google Scholar 

  6. Angel, E., Campigotto, R., Laforest, C.: Analysis and Comparison of Three Algorithms for the Vertex Cover Problem on Large Graphs with Low Memory Capacities. Algorithmic Operations Research 6(1), 56–67 (2011)

    Google Scholar 

  7. Asgeirsson, E., Stein, C.: Vertex Cover Approximations on Random Graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 285–296. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Bar-Yehuda, R., Hermelin, D., Rawitz, D.: Minimum Vertex Cover in Rectangle Graphs. In: 18th Annual European Conference on Algorithms, pp. 255–266 (2010)

    Google Scholar 

  9. Bomze, I.M., Budinich, M., Pardalos, P.M., Pedillo, M.: The Maximum Clique Problem. In: Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers (1999)

    Google Scholar 

  10. de Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  11. Delbot, F., Laforest, C.: A Better List Heuristic for Vertex Cover. Information Processing Letters 107, 125–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delbot, F., Laforest, C.: Analytical and Experimental Comparison of Six Algorithms for the Vertex Cover. ACM Journal of Experimental Algorithmics 15 (2010)

    Google Scholar 

  13. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and Approximation Results for the Connected Vertex Cover Problem in Graphs and Hypergraphs. Journal of Discrete Algorithms 8, 36–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  15. Gilmour, S., Dras, M.: Kernelization as Heuristic Structure for the Vertex Cover Problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 452–459. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Molloy, M., Reed, B.: A Critical Point for Random Graphs With a Given Degree Sequence. In: Random Structures and Algorithms, pp. 161–179 (1995)

    Google Scholar 

  17. Pirzada, S., Dharwadker, A.: Applications of Graph Theory. Journal of The Korean Society for Industrial and Applied Mathematics (KSIAM) 11(4), 19–38 (2007)

    Google Scholar 

  18. Pitt, L.: A Simple Probabilistic Approximation Algorithm for Vertex Cover. Tech. Rep. 404, Yale University, Department of Computer Science (1985)

    Google Scholar 

  19. Vigier, F., Latapy, M.: Random Generation of Large Connected Simple Graphs with Prescribed Degree Distribution. In: 11th International Conference on Computing and Combinatorics, Kunming, Yunnan, Chine (2005)

    Google Scholar 

  20. Vitter, J.S.: Algorithms and Data Structures for External Memory, Boston, Delft. Foundations and Trends in Theoretical Computer Science, vol. 2 (2009)

    Google Scholar 

  21. Weisstein, E.W.: Butterfly graph, from MathWorld – A Wolfram Web Ressource, http://mathworld.wolfram.com/ButterflyGraph.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angel, E., Campigotto, R., Laforest, C. (2012). Implementation and Comparison of Heuristics for the Vertex Cover Problem on Huge Graphs. In: Klasing, R. (eds) Experimental Algorithms. SEA 2012. Lecture Notes in Computer Science, vol 7276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30850-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30850-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30849-9

  • Online ISBN: 978-3-642-30850-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics