Abstract
The purpose of this paper is to determine the added value of pictorial stimulus-choice data in customer churn prediction. Using Random Forests and 5 times 2 fold cross-validation, this study analyzes how much pictorial stimulus – choice data and survey data increase the AUC of a churn model over and above administrative, operational and complaints data. The finding is that pictorial-stimulus choice data significantly increases AUC of models with administrative and operational data. The practical implication of this finding is that companies should start considering mining pictorial data from social media sites (e.g. Pinterest), in order to augment their internal customer database. This study is original in that it is the first that assesses the added value of pictorial stimulus-choice data in predictive models. This is important because more and more social media websites are focusing on pictures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Athanassopoulos, A.D.: Customer satisfaction cues to support market segmentation and explain switching behavior. J. Bus. Res. 47(3), 191–207 (2000)
Thomas, J.S.: A methodology for linking customer acquisition to customer retention. J. Marketing Res. 38(2), 262–268 (2001)
Hung, S.-Y., Yen, D.C., Wang, H.-Y.: Applying data mining to telecom churn management. Expert Syst. Appl. 31, 515–524 (2006)
Gupta, S., Lehmann, D.R., Stuart, J.A.: Valuing customers. J. Marketing 41, 7–19 (2004)
Van den Poel, D., Larivière, B.: Customer attrition analysis for financial services using proportional hazard models. Eur. J. Oper. Res. 157, 196–217 (2004)
Baecke, P., Van den Poel, D.: Data Augmentation by Predicting Spending Pleasure Using Commercially Available External Data. J. Intell. Inf. Syst. 36(3), 367–383 (2011)
Baesens, B., Viaene, S., Van den Poel, D., Vanthienen, J., Dedene, G.: Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur. J. Oper. Res. 138(1), 191–211 (2002)
Cullinan, G.J.: Picking them by their Batting Averages’ Recency – Frequency – Monetary Method of Controlling Circulation. Manual Release 2103, Direct Mail/Marketing Association, NY (1977)
Coussement, K., Van den Poel, D.: Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Syst. Appl. 34(1), 313–327 (2008)
Van den Poel, D.: Predicting mail-order repeat buying: Which variables matter? Tijdschr. Econ. Man. 48(3), 371–403 (2003)
Steenburgh, T.J., Ainsle, A., Engbretson, P.H.: Massively categorical variables, revealing the information in ZIP codes. Market Sci. 22, 40–57 (2003)
Hu, J., Zhong, N.: Web farming with clickstream. Int. J. Inf. Tech. Dec. Ma. 7, 291–308 (2008)
Hill, S., Provost, F., Volinsky, C.: Network-based marketing: Identifying likely adopters via consumer networks. Stat. Sci. 21, 256–276 (2006)
Coussement, K., Van den Poel, D.: Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst. Appl. 36, 6127–6134 (2009)
Coussement, K., Van den Poel, D.: Integrating the voice of customers through call center emails into a decision support system for churn prediction. Inform. Manage. 45(3), 164–174 (2008)
Baecke, P., Van den Poel, D.: Improving purchasing behavior predictions by Data Augmentation with situational variables. Int. J. Inf. Tech. Dec. Ma. 36(3), 367–383 (2010)
Thorleuchter, D., Van den Poel, D., Prinzie, A.: Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing. Expert Syst. Appl. 39(3), 2597–2605 (2012)
Gilman, A., Narayanan, B., Paul, S.: Mining call center dialog data. In: Zanasi, A., Ebecken, N.F.F., Brebbia, C.A. (eds.) Data Mining. V. WIT Press (2004)
Buckinx, W., Verstraeten, G., Van den Poel, D.: Predicting customer loyalty using the internal transactional database. Expert. Syst. Appl. 32(1), 125–134 (2007)
Lariviere, B., Van den Poel, D.: Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services. Expert. Syst. Appl. 27(2), 277–285 (2004)
Wong, W.K., Leung, S.Y.S., Guo, Z.X., Zeng, X., Mok, P.Y.: Intelligent product cross-selling system with radio frequency identification technology for retailing. Int. J. Prod. Econ. 135(1), 308–319 (2012)
Alshawi, S., Missi, F., Irani, Z.: Organisational, technical and data quality factors in CRM adoption - SMEs perspective. Ind. Market Manag. 40(3), 376–383 (2011)
Larivière, B., Van den Poel, D.: Predicting customer retention and profitability by using random forests and regression forests techniques. Expert. Syst. Appl. 29(2), 472–484 (2005)
Hirschman, A.O.: Exit, Voice, and Loyalty–Responses to Decline in Firms.Organizations, and States. Harvard University Press, Cambridge (1970)
Zaichkowsky, J.: The Personal Involvement Inventory- Reduction, Revision, and Application to Advertising. J. Advertising 23(4), 59–70 (1994)
Fornell, C., Johnson, M.D., Anderson, E., et al.: The American customer satisfaction index: nature, purpose, and findings. J. Marketing 60(4), 7–18 (1996)
Gounaris, S.: Trust and commitment influences on customer retention: insights from business-to-business services. J. Bus. Res. 58(2), 126–140 (2005)
Gustafsson, A., Johnson, M.D., Roos, I.: The effects of customer satisfaction, relationship commitment dimensions, and triggers on customer retention. J. Marketing 69(4), 210–218 (2005)
Ros, M., Schwartz, S.H., Surkiss, S.: Basic individual values, work values, and the meaning of work. Appl. Psychol-Int. Rev. 48(1), 49–71 (1999)
Rossiter, J.: The C-OAR-SE procedure for scale development in marketing. Int. J. Res. Mark. 19(4), 305–335 (2002)
Lindeman, M., Verkasalo, M.: Measuring values with the short Schwartz’s value survey. J. Pers. Assess. 85(2), 170–178 (2005)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77–87 (2002)
Luo, T., Kramer, K., Goldgof, D.B., Hall, L.O., Samson, S., Remsen, A., et al.: Recognizing plankton images from the shadow image particle profiling evaluation recorder. IEEE T. Syst. Man. Cy. B 34(4), 1753–1762 (2004)
Ishwaran, H., Blackstone, E.H., Pothier, C.E., Lauer, M.S.: Relative risk forests for exercise heart rate recovery as a predictor of mortality. J. Am. Stat. Assoc. 99(467), 591–600 (2004)
Buckinx, W., Van den Poel, D.: Customer base analysis: Partial defection of behaviourally-loyal clients in a non-contractual FMCG retail setting. Eur. J. Oper. Res. 164(1), 252–268 (2005)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. ch. 8. Wiley, NY (2001)
Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for com-paring induction algorithms. In: Shavlik, J. (ed.) Proc. of 15th International Conference on Machine Learning, ICML 1998. Morgan Kaufman, San Francisco (1998)
Langley, P.: Crafting papers on machine learning. In: Langley, P. (ed.) Proc. of 17th International Conference on Machine Learning, ICML 200. Stanford University, Stanford (2000)
De Bock, K.W., Coussement, K., Van den Poel, D.: Ensemble classification based on generalized additive models. Comput. Stat. Data An. 54(6), 1535–1546 (2010)
Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1924 (1998)
Alpaydin, E.: Combined 5 x 2cv F test for comparing supervised classification learning algorithms. Neural Comput. 11(8), 1885–1892 (1999)
Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Mach. Learn. Res. 7, 1–30 (2006)
Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ballings, M., Van den Poel, D., Verhagen, E. (2012). Improving Customer Churn Prediction by Data Augmentation Using Pictorial Stimulus-Choice Data. In: Casillas, J., Martínez-López, F., Corchado Rodríguez, J. (eds) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30864-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-30864-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30863-5
Online ISBN: 978-3-642-30864-2
eBook Packages: EngineeringEngineering (R0)