Skip to main content

Improving Customer Churn Prediction by Data Augmentation Using Pictorial Stimulus-Choice Data

  • Conference paper
Management Intelligent Systems

Abstract

The purpose of this paper is to determine the added value of pictorial stimulus-choice data in customer churn prediction. Using Random Forests and 5 times 2 fold cross-validation, this study analyzes how much pictorial stimulus – choice data and survey data increase the AUC of a churn model over and above administrative, operational and complaints data. The finding is that pictorial-stimulus choice data significantly increases AUC of models with administrative and operational data. The practical implication of this finding is that companies should start considering mining pictorial data from social media sites (e.g. Pinterest), in order to augment their internal customer database. This study is original in that it is the first that assesses the added value of pictorial stimulus-choice data in predictive models. This is important because more and more social media websites are focusing on pictures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Athanassopoulos, A.D.: Customer satisfaction cues to support market segmentation and explain switching behavior. J. Bus. Res. 47(3), 191–207 (2000)

    Article  Google Scholar 

  2. Thomas, J.S.: A methodology for linking customer acquisition to customer retention. J. Marketing Res. 38(2), 262–268 (2001)

    Article  Google Scholar 

  3. Hung, S.-Y., Yen, D.C., Wang, H.-Y.: Applying data mining to telecom churn management. Expert Syst. Appl. 31, 515–524 (2006)

    Article  Google Scholar 

  4. Gupta, S., Lehmann, D.R., Stuart, J.A.: Valuing customers. J. Marketing 41, 7–19 (2004)

    Article  Google Scholar 

  5. Van den Poel, D., Larivière, B.: Customer attrition analysis for financial services using proportional hazard models. Eur. J. Oper. Res. 157, 196–217 (2004)

    Article  MATH  Google Scholar 

  6. Baecke, P., Van den Poel, D.: Data Augmentation by Predicting Spending Pleasure Using Commercially Available External Data. J. Intell. Inf. Syst. 36(3), 367–383 (2011)

    Article  Google Scholar 

  7. Baesens, B., Viaene, S., Van den Poel, D., Vanthienen, J., Dedene, G.: Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur. J. Oper. Res. 138(1), 191–211 (2002)

    Article  MATH  Google Scholar 

  8. Cullinan, G.J.: Picking them by their Batting Averages’ Recency – Frequency – Monetary Method of Controlling Circulation. Manual Release 2103, Direct Mail/Marketing Association, NY (1977)

    Google Scholar 

  9. Coussement, K., Van den Poel, D.: Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Syst. Appl. 34(1), 313–327 (2008)

    Article  Google Scholar 

  10. Van den Poel, D.: Predicting mail-order repeat buying: Which variables matter? Tijdschr. Econ. Man. 48(3), 371–403 (2003)

    MathSciNet  Google Scholar 

  11. Steenburgh, T.J., Ainsle, A., Engbretson, P.H.: Massively categorical variables, revealing the information in ZIP codes. Market Sci. 22, 40–57 (2003)

    Article  Google Scholar 

  12. Hu, J., Zhong, N.: Web farming with clickstream. Int. J. Inf. Tech. Dec. Ma. 7, 291–308 (2008)

    Article  Google Scholar 

  13. Hill, S., Provost, F., Volinsky, C.: Network-based marketing: Identifying likely adopters via consumer networks. Stat. Sci. 21, 256–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coussement, K., Van den Poel, D.: Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst. Appl. 36, 6127–6134 (2009)

    Article  Google Scholar 

  15. Coussement, K., Van den Poel, D.: Integrating the voice of customers through call center emails into a decision support system for churn prediction. Inform. Manage. 45(3), 164–174 (2008)

    Article  Google Scholar 

  16. Baecke, P., Van den Poel, D.: Improving purchasing behavior predictions by Data Augmentation with situational variables. Int. J. Inf. Tech. Dec. Ma. 36(3), 367–383 (2010)

    Google Scholar 

  17. Thorleuchter, D., Van den Poel, D., Prinzie, A.: Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing. Expert Syst. Appl. 39(3), 2597–2605 (2012)

    Article  Google Scholar 

  18. Gilman, A., Narayanan, B., Paul, S.: Mining call center dialog data. In: Zanasi, A., Ebecken, N.F.F., Brebbia, C.A. (eds.) Data Mining. V. WIT Press (2004)

    Google Scholar 

  19. Buckinx, W., Verstraeten, G., Van den Poel, D.: Predicting customer loyalty using the internal transactional database. Expert. Syst. Appl. 32(1), 125–134 (2007)

    Article  Google Scholar 

  20. Lariviere, B., Van den Poel, D.: Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services. Expert. Syst. Appl. 27(2), 277–285 (2004)

    Article  Google Scholar 

  21. Wong, W.K., Leung, S.Y.S., Guo, Z.X., Zeng, X., Mok, P.Y.: Intelligent product cross-selling system with radio frequency identification technology for retailing. Int. J. Prod. Econ. 135(1), 308–319 (2012)

    Article  Google Scholar 

  22. Alshawi, S., Missi, F., Irani, Z.: Organisational, technical and data quality factors in CRM adoption - SMEs perspective. Ind. Market Manag. 40(3), 376–383 (2011)

    Article  Google Scholar 

  23. Larivière, B., Van den Poel, D.: Predicting customer retention and profitability by using random forests and regression forests techniques. Expert. Syst. Appl. 29(2), 472–484 (2005)

    Article  Google Scholar 

  24. Hirschman, A.O.: Exit, Voice, and Loyalty–Responses to Decline in Firms.Organizations, and States. Harvard University Press, Cambridge (1970)

    Google Scholar 

  25. Zaichkowsky, J.: The Personal Involvement Inventory- Reduction, Revision, and Application to Advertising. J. Advertising 23(4), 59–70 (1994)

    Google Scholar 

  26. Fornell, C., Johnson, M.D., Anderson, E., et al.: The American customer satisfaction index: nature, purpose, and findings. J. Marketing 60(4), 7–18 (1996)

    Article  Google Scholar 

  27. Gounaris, S.: Trust and commitment influences on customer retention: insights from business-to-business services. J. Bus. Res. 58(2), 126–140 (2005)

    Article  Google Scholar 

  28. Gustafsson, A., Johnson, M.D., Roos, I.: The effects of customer satisfaction, relationship commitment dimensions, and triggers on customer retention. J. Marketing 69(4), 210–218 (2005)

    Article  Google Scholar 

  29. Ros, M., Schwartz, S.H., Surkiss, S.: Basic individual values, work values, and the meaning of work. Appl. Psychol-Int. Rev. 48(1), 49–71 (1999)

    Article  Google Scholar 

  30. Rossiter, J.: The C-OAR-SE procedure for scale development in marketing. Int. J. Res. Mark. 19(4), 305–335 (2002)

    Article  Google Scholar 

  31. Lindeman, M., Verkasalo, M.: Measuring values with the short Schwartz’s value survey. J. Pers. Assess. 85(2), 170–178 (2005)

    Article  Google Scholar 

  32. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  33. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Luo, T., Kramer, K., Goldgof, D.B., Hall, L.O., Samson, S., Remsen, A., et al.: Recognizing plankton images from the shadow image particle profiling evaluation recorder. IEEE T. Syst. Man. Cy. B 34(4), 1753–1762 (2004)

    Article  Google Scholar 

  35. Ishwaran, H., Blackstone, E.H., Pothier, C.E., Lauer, M.S.: Relative risk forests for exercise heart rate recovery as a predictor of mortality. J. Am. Stat. Assoc. 99(467), 591–600 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Buckinx, W., Van den Poel, D.: Customer base analysis: Partial defection of behaviourally-loyal clients in a non-contractual FMCG retail setting. Eur. J. Oper. Res. 164(1), 252–268 (2005)

    Article  MATH  Google Scholar 

  37. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. ch. 8. Wiley, NY (2001)

    MATH  Google Scholar 

  38. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for com-paring induction algorithms. In: Shavlik, J. (ed.) Proc. of 15th International Conference on Machine Learning, ICML 1998. Morgan Kaufman, San Francisco (1998)

    Google Scholar 

  39. Langley, P.: Crafting papers on machine learning. In: Langley, P. (ed.) Proc. of 17th International Conference on Machine Learning, ICML 200. Stanford University, Stanford (2000)

    Google Scholar 

  40. De Bock, K.W., Coussement, K., Van den Poel, D.: Ensemble classification based on generalized additive models. Comput. Stat. Data An. 54(6), 1535–1546 (2010)

    Article  Google Scholar 

  41. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Google Scholar 

  42. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1924 (1998)

    Article  Google Scholar 

  43. Alpaydin, E.: Combined 5 x 2cv F test for comparing supervised classification learning algorithms. Neural Comput. 11(8), 1885–1892 (1999)

    Article  Google Scholar 

  44. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Ballings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ballings, M., Van den Poel, D., Verhagen, E. (2012). Improving Customer Churn Prediction by Data Augmentation Using Pictorial Stimulus-Choice Data. In: Casillas, J., Martínez-López, F., Corchado Rodríguez, J. (eds) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30864-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30864-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30863-5

  • Online ISBN: 978-3-642-30864-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics