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Abstract

In graph realization problems one is given a degree sequence and the
task is to decide whether there is a graph whose vertex degrees match to
the given sequence. This realization problem is known to be polynomial-
time solvable when the graph is directed or undirected. In contrary, we
show NP-completeness for the problem of realizing a given sequence of
pairs of positive integers (representing indegrees and outdegrees) with a
directed acyclic graph, answering an open question of Berger and Müller-
Hannemann [FCT 2011]. Furthermore, we classify the problem as fixed-
parameter tractable with respect to the parameter “maximum degree”.

1 Introduction

Berger and Müller-Hannemann [1] introduced the following problem:

DAG Realization

Input: A multiset S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
of integer pairs with ai, bi ≥ 0.

Question: Is there a directed acyclic graph (without parallel arcs and self-
loops) that admits a labeling of its vertex set {v1, . . . , vn} such
that for all vi ∈ V the indegree is ai and the outdegree is bi?

If the degree sequence S is a yes-instance, then S is called realizable and the cor-
responding directed acyclic graph (dag for short)D is called a realizing dag for S.
Berger and Müller-Hannemann [1] showed that this problem is polynomial-time
solvable for special types of degree sequences, but left the complexity of the
general problem as their main open question. We answer this question by show-
ing that DAG Realization is NP-complete. Moreover, on the positive side
we classify DAG Realization as fixed-parameter tractable with respect to the
parameter maximum degree ∆ := max{a1, b1, . . . , an, bn}. The corresponding
algorithm actually constructs for yes-instances a realizing dag.

Related Work. It is known for a long time that deciding whether a given
degree sequence (a multiset of positive integers) is realizable with an undirected

1

http://arxiv.org/abs/1110.1510v2


graph is polynomial-time solvable. There are characterizations for realizable
degree sequences due to Erdős and Gallai [5] and algorithms by Havel [11] and
Hakimi [10]. In the case, where one asks whether there is a directed graph
realizing the given degree sequence (a multiset of positive integer pairs), has
also been intensively studied: See Chen [3], Fulkerson [7], Gale [8], Ryser [18]
for characterizations of digraph realizations and Kleitman and Wang [13] for
polynomial-time algorithms. The problem of realizing degree sequences has also
been studied in context of (loop-less) multigraphs, where the aim is to minimize
or maximize the number of multi-edges [12].

2 Preliminaries

We set N := {0, 1, 2, . . .}. We denote with ⊎ the multiset sum (e.g {1, 1} ⊎
{1, 2} = {1, 1, 1, 2}).

A parameterized problem (I, k), consisting of the problem instance I and the
parameter k ∈ N, is fixed-parameter tractable if it can be solved in f(k) · nc

time. Thereby, f is a computable function solely depending on k and c ∈ N

is a constant independent from I and k. For a more detailed introduction to
parameterized algorithmics and complexity we refer to the monographs [4, 6, 16].

We denote directed graphs by D = (V,A) with vertex set V and arc set A ⊆
V × V . The indegree of v ∈ V is denoted by d−(v) and the outdegree by d+(v).
Correspondingly, for a degree sequence S and an element s ∈ S with s =

(
a
b

)
,

we set d−(s) := a and d+(s) := b.
A directed graph D = (V,A) is a dag if it does not contain a cycle. A cycle

is a vertex sequence v1, . . . , vl such that for all 1 ≤ i < l : (vi, vi+1) ∈ A and
(vl, v1) ∈ A. Each dag D admits a topological ordering, that is, an ordering of
all its vertices v1, . . . , vn such that for all arcs (vi, vj) ∈ A it holds that i < j.
Consequently, for a realizing dag we call a corresponding topological ordering a
realizing topological ordering.

We use the opposed order ≤opp for the elements of a degree sequence S, as
introduced by Berger and Müller-Hannemann [1]:

Definition 1.
(
a1

b1

)
≤opp

(
a2

b2

)
⇐⇒ (a1 ≤ a2 ∧ b1 ≥ b2)

Note that there might be elements in the degree sequence S that are not
comparable with respect to the opposed order. However, we can always assume
that a realization does not collide with the opposed order and thus DAG Real-

ization is polynomial-time solvable in case of all elements of S are comparable.

Lemma 1 ([1, Corollary 3]). Let S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
be a realizable degree

sequence. Then, there exists a realizing topological ordering φ such that for all
1 ≤ i, j ≤ n with si =

(
ai

bi

)
≤opp

(
aj

bj

)
= sj and si 6= sj, it holds that in φ the

position of the vertex that corresponds to si is smaller than the position of the
vertex that corresponds to sj.

Our paper is organized as follows: The next section contains the proof of
the NP-hardness and in Section 4 we show that DAG Realization is fixed-
parameter tractable with respect to the parameter maximum degree ∆.
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3 NP-Completeness

In this section we show the NP-hardness of DAG Realization by giving a
polynomial-time many-to-one reduction from the strongly NP-hard problem
3-Partition [9]:

3-Partition

Input: A sequence A = a1, . . . , a3m of 3m positive integers and an
integer B with

∑3m
i=1 ai = mB and ∀i : B/4 < ai < B/2.

Question: Is there a partition of the 3m integers from A into m disjoint
triples such that in every triple the three elements add up to B?

This section is organized as follows: First we describe the construction of our
reduction and explain the idea of how it works. Then, we prove the correctness
in the remainder of the section.

Construction. Given an instance (A, B) of 3-Partition, we construct an
equivalent instance S of DAG Realization as follows:

S := X0, X1, . . . , Xm, α1, α2, . . . , α3m

where αi =
(
ai

ai

)
, 1 ≤ i ≤ 3m. The Xi, 0 ≤ i ≤ m, are subsequences which

we formally define after giving the idea of the construction. We call an element
from a subsequence Xi an x-element and the αj are called a-elements. In a
realizing dag D the vertices realizing x-elements are called x-vertices and the
vertices realizing a-elements are called a-vertices.

The intuition of the construction is that a dag D realizing S (if it exists)
looks as follows: The vertices realizing elements of a subsequence Xi, 0 ≤ i ≤
m, form a “block” in a realizing topological ordering φ. These blocks are a
skeletal structure in any realizing topological ordering. There are m “gaps”
between these blocks of x-vertices. The construction ensures that these gaps
are filled with a-vertices and, moreover, the indegree and outdegree of all the
a-vertices in a gap sum up to B. Hence, these m gaps require to partition the a-
vertices into m sets where each them has in total in- and outdegree B and, thus,
correspond to a solution for the 3-Partition instance where we reduce from.
In the reverse direction, for each triple in a solution of a 3-Partition instance
the corresponding a-vertices will be used to fill up one gap. See Figure 1 for an
example of the construction.

To achieve the mentioned skeletal structure of the subsequences X0, . . . , Xm,
we require the corresponding x-vertices to form a complete dag: A dag with n ver-

tices and
(
n

2

)
arcs that realizes the degree sequence

{(
0

n−1

)
,
(

1
n−2

)
, . . . ,

(
n−1
0

)}
.

Observe that there is only one dag realizing such a sequence and, furthermore,
such a complete dag admits only one topological ordering.

Now, we complete the reduction by defining the subsequences X0, . . . , Xm.
As indicated in Figure 1, X0 and Xm contain B elements and the other subse-
quences contain 2B elements. The subsequence X0 consists of the elements x00,
x10, . . ., x

B−1
0 . This subsequence corresponds to the x-vertices v00 , . . . , v

B−1
0

forming the first block in a realizing dag for S. Remember that the x-vertices
are supposed to form a complete dag. To achieve this, vj0 has (B − 1 − j) out-

going arcs to vj+1
0 , . . . , vB−1

0 and (m − 1)2B + B = (2m − 1)B outgoing arcs

to the x-vertices in the subsequent blocks. Furthermore, vj0 has j ingoing arcs
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X0 X1

v1

v2

v3

X2

v4

v5

v6

X3

v7

v8

v9

X4

v10

v11

v12

Figure 1: A schematic representation of a dag that realizes a degree sequence S
that is constructed from a 3-Partition instance with B = 12 and m = 4.
There are five blocks marked by the gray ellipses and four gaps between them.
In each gap there are three a-vertices, altogether having in- and outdegree B.
The sets Xi, 1 ≤ i ≤ 3, are partitioned into two parts of size B. The vertices in
the left part have B ingoing arcs from the a-vertices that fill the gap between
Xi−1 and Xi. Correspondingly, the vertices in the right part have B outgoing
arcs to the a-vertices that fill the gap between Xi and Xi+1. Consequently, the
first and the last block X0 and X4 are of size B. The in- and outdegree of the
a-vertices in each triple sum up to B.

from the x-vertices v00 , . . . , v
j−1
0 . Finally, each x-vertex in v00 , . . . , v

B−1
0 has one

outgoing arc to one of the three subsequent a-vertices. Hence, the corresponding
x-element of vj0 is as follows:

xj0 :=

(
j

(B − 1− j) + (2m− 1)B + 1

)
=

(
j

2mB − j

)
.

Analogously, the subsequence Xm consists of B elements x0m, x
1
m, . . . , x

B−1
m de-

fined as follows:

xjm :=

(
(2m− 1)B + j + 1

B − 1− j

)
.

For 0 < i < m, the subsequence Xi consists of 2B elements x0i , x
1
i , . . . , x

2B−1
i .

Let v0i , . . . , v
2B−1
i denote the corresponding x-vertices. Then, vji has (i−1)2B+

B = (2i − 1)B ingoing arcs from the x-vertices in the preceding blocks and
j ingoing arcs from v0i , . . . , v

j−1
i . Furthermore, vji has (m − i − 1)2B + B =

(2m− 2i− 1)B outgoing arcs to the subsequent blocks and 2B− 1− j outgoing
arcs to vj+1

i , . . . , vB−1
i . Finally, if j < B, then vji has an ingoing arc from one of

the three preceding a-vertices. Otherwise, if j ≥ B, then vji has an outgoing arc
to one of the three subsequent a-vertices. Hence, the corresponding x-element
of vji is as follows:

xji :=

(
(2i− 1)B + j + 1

(2m− 2i+ 1)B − 1− j

)
if j < B,

xji :=

(
(2i− 1)B + j

(2m− 2i+ 1)B − j

)
if j ≥ B.

4



Observe that the strong NP-hardness of 3-Partition is essential to prove the
polynomial running time of the reduction: The size of the constructed DAG

Realization instance is upper-bounded by a polynomial in the values of the
integers inA. Since 3-Partition is strongly NP-hard, it remains NP-hard when
the values of the integers in A are bounded by a polynomial in the input size.
Hence, the size of the DAG Realization instance is polynomially bounded in
the size of the 3-Partition instance. Clearly, the construction can be computed
in polynomial time.

Correctness. In the following, we prove the correctness of the construction
given above. Therefore, throughout this subsection let (A, B) be an instance
of 3-Partition and let S be the corresponding degree sequence formed by the
construction above.

Lemma 2. If (A, B) is a yes-instance of 3-Partition, then S is a yes-instance
of DAG Realization.

Proof. We prove that if 3-Partition is a yes-instance, then there exists a real-
izing dag for S as described above and pictured in Figure 1.

Let π be a permutation of the sequence A such that aπ(3i+1) + aπ(3i+2) +
aπ(3i+3) = B for all 0 ≤ i < m. Since (A, B) is a yes-instance of 3-Partition
such a permutation exists. We now construct a realizing dag D = (V,A). The
degree sequence S and, hence, a realizing dag D consists of |V | = B + (m −
1)2B +B + 3m = 2mB + 3m vertices. We group V into 2m+ 1 disjoint vertex
sets V = V b

0 ∪V
b
1 ∪. . .∪V

b
m∪V t

1 ∪. . .∪V
t
m with V b

i = {v0i , v
1
i , . . . , v

2B−1
i } for all 1 ≤

i < m and V t
j = {uπ(3j+1), uπ(3j+2), uπ(3j+3)} for all 1 ≤ j ≤ m. The first set

is V b
0 = {v00 , v

1
0 , . . . , v

B−1
0 } and V b

m contains the last B vertices v0m, . . . , v
B−1
m .

Each vertex vji realizes the x-element xji . Each vertex ui realizes the a-
element αi. The vertex sets V b

i form the blocks denoted by the ellipses in
Figure 1. The vertex sets V t

j correspond to the triples of a-vertices filling the
gaps between the blocks. By construction the indegrees and also the outdegrees
of the vertices in each V t

j add up to B.

We now describe how the vertices are connected with arcs: The x-vertex vji
has an outgoing arc to every vertex of V b

ℓ , ℓ > i, and an outgoing arc to all the
“following” vertices in his block, that is, the x-vertices vℓi with ℓ > j. If 0 ≤ j ≤

B − 1 and 0 < i ≤ m, then vji has one ingoing arc from one of the a-vertices

of V b
i−1. If B ≤ j ≤ 2B−1 and 0 < i < m or 0 ≤ j ≤ B−1 and i = 0, then vji has

one outgoing arc to one of the a-vertices of V b
i . Since the sum of the indegrees

and the sum of the outdegrees in each vertex set V t
j adds up to B, the arcs

between a-vertices and x-vertices can be set such that each a-vertex ui has ai
ingoing and outgoing arcs. This completes the description of D. Clearly, D is
a dag. Hence, it remains to show that D realizes S.

The indegree of vji , 1 ≤ i < m, is as follows: vji has ingoing arcs from
the 2B(i−1)+B = (2i−1)B vertices realizing the elements in X0, X1, . . . , Xi−1,
from the j vertices v0i , . . . , v

j−1
i , and from one a-vertex in Vi−1 if 0 ≤ j < B.

Altogether, this gives an indegree of (2i−1)B+j+1 if 0 < j < B or (2i−1)B+j
if B ≤ j < 2B.

The outdegree of vji , 1 ≤ i < m, is as follows: vji has outgoing arcs to
the 2B(m − i − 1) + B = (2m − 2i − 1)B vertices realizing the elements
in Xi+1, Xi+2, . . . , Xm, to the 2B − 1 − j vertices vj+1

i , . . . , v2B−1
i , and to one
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a-vertex in V t
i if 2B > j ≥ B. Altogether this gives an outdegree of (2m −

2i + 1)B − j − 1 if 0 ≤ j < B or (2m − 2i + 1)B − j if B ≤ j < 2B. Hence
the x-vertex vji fulfills the degree constraints of the x-element xji (special cases
of i ∈ {0,m} follow analogously).

Each x-vertex of {v0i+1, . . . , v
B−1
i+1 } has one ingoing arc from one of the a-

vertices uπ(3i+1), uπ(3i+2), uπ(3i+3) of V t
i . Hence, the total number of outgoing

arcs of uπ(3i+1), uπ(3i+2), and uπ(3i+3) is B. Each x-vertex of {vBi , . . . , v
2B−1
i }

has one outgoing arc to one of the a-vertices uπ(3i+1), uπ(3i+2), uπ(3i+3) of V t
i .

Hence, the total number of ingoing arcs of uπ(3i+1), uπ(3i+2) and uπ(3i+3) is B.
Since aπ(3i+1) + aπ(3i+2) + aπ(3i+3) = B, the a-vertices uπ(3i+1), uπ(3i+2), and
uπ(3i+3) fulfill the degree constraints of απ(3i+1), απ(3i+2), and απ(3i+3).

Overall, each a-vertex ui has indegree and outdegree equal to ai and each
vertex vji fulfills the degree constraints of xji .

To show the reverse direction, we first need some observations.

Observation 1. In any dag D realizing S, the a-vertices form an independent
set and the x-vertices form a complete dag.

Proof. The number d−(X) of ingoing arcs to all x-vertices is:

d−(X) =

B−1∑

j=0

d−(xj0) +

m−1∑

i=1

B−1∑

j=0

d−(xji ) +

m−1∑

i=1

2B−1∑

j=B

d−(xji ) +

B−1∑

j=0

d−(xim)

=
B−1∑

j=0

j +
m−1∑

i=1

B−1∑

j=0

((2i− 1)B + j + 1)

+

m−1∑

i=1

2B−1∑

j=B

((2i− 1)B + j) +

B−1∑

j=0

((2m− 1)B + j + 1)

= 2m2B2.

Note that d−(X) is equal to the number d+(X) of outgoing arcs from all x-
vertices. The number of a-vertices is 3m and the number of x-vertices is 2mB.
Hence, the number ξ of arcs connecting two x-vertices is at most:

ξ =
1

2
2mB(2mB − 1) = 2m2B2 −mB.

As a consequence, there are at least d−(X) − ξ = mB arcs going from an a-

vertex to an x-vertex. Since mB =
∑3m

i=1 ai is the number of outgoing arcs from
the a-vertices, all outgoing arcs from a-vertices go to x-vertices. Thus, in any
realizing dag D the a-vertices form an independent set and the number of arcs
that connect two x-vertices is exactly ξ. Hence, the x-vertices form a clique in
the underlying undirected graph.

The next observation shows that for a realizable degree sequence S there
exists a realization D with a topological ordering of the vertices such that the
x-vertices are ordered as follows:

x00, x
1
0, . . . , x

B−1
0 , x01, . . . , x

2B−1
1 , x02, . . . , x

2B−1
2 , x03, . . . , x

2B−1
m−1 , x

0
m, . . . , x

B−1
m .
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Observation 2. If S is realizable, then there exists a realizing topological or-
dering φ such that in φ for all i < j the vertex realizing xiℓ is ahead of the vertex

realizing xjℓ and for all 0 ≤ h < k ≤ m the vertices realizing elements of Xh are
ahead of the vertices realizing elements of Xk.

Proof. We first show that for all i < j the vertex realizing xiℓ is ahead of

the vertex realizing xjℓ : Let i and j be two integers with i < j. By Lemma 1

it suffices to show that xiℓ ≤opp xjℓ , for 0 ≤ ℓ ≤ m. That is, it suffices to

show d−(xiℓ) − d−(xjℓ) ≤ 0 and d+(xiℓ) − d+(xjℓ) ≥ 0, where d−(xiℓ) (d+(xiℓ))
is the indegree (outdegree) of the x-vertex realizing xiℓ. This is shown in the
following case distinction:

Case ℓ = 0 (0 ≤ i < j ≤ B − 1):

d−(xi0)− d−(xj0) = i− j < 0

d+(xi0)− d+(xj0) = 2mB − i− 2mB + j

= j − i > 0

Case 0 < ℓ < m (0 ≤ i < j ≤ 2B − 1):

d−(xiℓ)− d−(xjℓ) ≤ (2ℓ− 1)B + i+ 1− ((2ℓ− 1)B + j)

= i + 1− j ≤ 0

d+(xiℓ)− d+(xjℓ) ≥ (2m− 2ℓ+ 1)− i − 1− ((2m− 2ℓ+ 1)− j)

= j − 1− i ≥ 0

Case ℓ = m (0 ≤ i < j ≤ B − 1):

d−(xim)− d−(xjm) = (2m− 1)B + i+ 1− ((2m− 1)B + j + 1)

= i− j < 0

d+(xim)− d+(xjm) = B − 1− i− (B − 1− j)

= j − i > 0

We now show the second part: for all 0 ≤ h < k ≤ m it holds that in φ the ver-
tices realizing elements of Xh are ahead of the vertices realizing elements of Xk.
By Lemma 1 and transitivity of ≤opp it remains to show that (1) xB−1

0 ≤opp x
0
1

and (2) x2B−1
ℓ ≤opp x

0
ℓ+1 for all 0 < ℓ < m:

(1):

d−(xB−1
0 )− d−(x01) = B − 1− ((2 − 1)B + 1)

= − 2 < 0

d+(xB−1
0 )− d+(x01) = 2mB − (B − 1)− ((2m− 2 + 1)B − 1)

= 2 > 0

(2):

d−(x2B−1
ℓ )− d−(x0ℓ+1) = (2ℓ− 1)B + 2B − 1− ((2(ℓ+ 1)− 1)B + 1)

= − 2 < 0

d+(x2B−1
ℓ )− d+(x0ℓ+1) = (2m− 2ℓ+ 1)B − 2B + 1

− ((2m− 2(ℓ+ 1) + 1)B − 1)

= 2 > 0

7



With Observation 1 and 2 we can prove the next lemma, which completes the
proof of the correctness of our reduction.

Lemma 3. If S is a yes-instance of DAG Realization, then (A, B) is a
yes-instance of 3-Partition.

Proof. Let D = (V,A) be the realization of S with a topological ordering φ.
Let vji be the x-vertex realizing x

j
i and let ui be the a-vertex realizing ai. Further-

more, posφ(v) denotes the position of v in the topological ordering φ. Since S

is a yes-instance, we can assume by Observation 2 that posφ(v
j
i ) < posφ(v

ℓ
i )

for j < ℓ and that posφ(v
j
i ) < posφ(v

ℓ
k) for i < k.

From Observation 1 it follows that none of the x-vertices v00 , v
1
0 , . . . , v

B−1
0

has an ingoing arc from an a-vertex, but each has one outgoing arc to an
a-vertex. Hence, we can assume that posφ(ui) > Φ(vB−1

0 ) for all 1 ≤ i ≤

3m. Observe that each x-vertex v01 , v
1
1 , . . . , v

B−1
1 has one ingoing arc from

an a-vertex and no outgoing arc to an a-vertex. Hence, we can assume that
there are a-vertices ui1 , ui2 , . . . , uiℓ with posφ(v

B−1
0 ) < posφ(uij ) < posφ(v

0
1)

and
∑ℓ

j=1 aij = B. Since B/4 < aj < B/2 for all 1 ≤ j ≤ 3m, it follows
that ℓ = 3.

The vertices vB1 , . . . , v
2B−1
1 also have no ingoing arc from an a-vertex but

each of these vertices has an outgoing arc to an a-vertex. Also, each of the
vertices v02 , . . . , v

B−1
2 needs one ingoing arc from an a-vertex. So, again, we

can assume that in the topological ordering φ of D there are three a-vertices
between v2B−1

1 and v02 such that their indegrees and also their outdegrees sum
up to B. Analogously, it follows for all 1 ≤ i < m that there are three a-
vertices uji1 , uji2 , uji3 with posφ(v

2B−1
i ) < posφ(uji1) < posφ(uji2) < posφ(uji3) <

posφ(v
0
i+1) and

∑3
ℓ=1 ajiℓ = B. Hence, (A, B) is a yes-instance of 3-Partition.

Our construction together with Lemma 2 and Lemma 3 yields the NP-hardness
of DAG Realization. Containment in NP is easy to see: Guessing an n-vertex
dag and checking whether or not it is a realization for S is clearly doable in poly-
nomial time. Hence, we arrive at the following theorem.

Theorem 1. DAG Realization is NP-complete.

Berger and Müller-Hannemann [1] gave an polynomial-time algorithm for
DAG Realization if the degree sequence can be ordered with respect to the
opposed order. Hence, one may search for other polynomial-time solvable spe-
cial cases. One way to identify such special cases is to have a closer look on
NP-hardness proofs and to check whether certain “quantities” need to be un-
bounded in order to make the proof (many-to-one reduction) work [14, 17]. In
our NP-hardness proof the maximum degree ∆ is unbounded. We show in the
next section that DAG Realization is polynomial-time solvable for constant
maximum degree. Indeed, we can even show fixed-parameter tractability with
respect to the parameter ∆.

4 Fixed-Parameter Tractability

Denoting the maximum degree in a degree sequence by ∆, in this section we
show that DAG Realization is fixed-parameter tractable with respect to the

8



p3 p7 p8

Figure 2: A realizing topological ordering for the example degree sequence S ={(
0
1

)
,
(
0
1

)
,
(
0
2

)
,
(
2
2

)
,
(
2
2

)
,
(
1
2

)
,
(
2
3

)
,
(
3
2

)
,
(
2
1

)
,
(
3
2

)
,
(
2
0

)
,
(
1
0

)}
. The highlighted potentials

are as follows: p3 = (3, 1)T , p7 = (4, 1, 1)T , and p8 = (3, 2)T .

parameter ∆. To describe the basic idea that our fixed-parameter algorithm is
based on, we need the following definition.

Definition 2. Let φ = v1, v2, . . . , vn be a topological ordering for a dag D. For
all 1 ≤ i ≤ n, the potential at position i is a vector pφi ∈ N

∆ where pφi [l] for
1 ≤ l ≤ ∆ is the number of vertices in the subsequence v1, . . . , vi that have in D
at least l neighbors in the subsequence vi+1, . . . , vn. The value of the potential pφi
is ω(pφi ) :=

∑∆
l=1 p

φ
i [l].

See Figure 2 for an example of the definition. If the topological ordering φ
is clear from the context, then we write p instead of pφ. Observe that, for any
potential pi ∈ N

∆, it holds that pi[j] ≥ pi[j + 1] for all 1 ≤ j < ∆. We denote
with 0∆ the potential of value zero.

Algorithm Outline. Our algorithm consists of two parts. First, if the degree
sequence of aDAG Realization instance admits a dag realization where at any
position the value of the potential is at least ∆2, then we will find such a “high-
potential” realization with the algorithm that is described in Subsection 4.2.
Otherwise, by exploiting the fact that the value of all potentials is upper-
bounded, we will find a “low potential” realization with the algorithm described
in Subsection 4.3.

4.1 General Terms and Observations

In this section we introduce some general notations and observations that will be
used in the algorithms to find high potential as well as low potential realizations.

Notation: For a topological ordering φ = v1, . . . , vn and two indices 1 ≤ i ≤ j ≤
n, set φ[i, j] := vi, vi+1, . . . , vj . The set {vi, . . . , vj} is also denoted by φ[i, j].

Definition 3. Let S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
be a degree sequence. Two tuples

(
ai

bi

)

and
(
aj

bj

)
are of the same type if ai = aj and bi = bj. Furthermore, a type

(
ai

bi

)

is a good type if ai ≤ bi and otherwise it is a bad type.

Note that there are at most (∆ + 1)2 different types.
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Well-connected dags. Berger and Müller-Hannemann [2] already observed

that, given a degree sequence S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
, one can check in polynomial

time whether S is realizable by a dag with a corresponding topological ordering
v1, . . . , vn where d−(vi) = ai and d

+(vi) = bi. This implies that it is sufficient to
compute the correct ordering of the elements in S as they appear in a topological
ordering of a realizing dag. To prove this, the main observation is that for any
topological ordering one can construct at least one corresponding dag by well-
connecting consecutive vertices.

Definition 4. Let D be a dag with a corresponding topological ordering φ =
v1, . . . , vn. The remaining outdegree at position j of vertex vi, 1 ≤ i ≤ j ≤ n,
is the number of vi’s neighbors in the subsequence φ[j, n]. Furthermore, D is
well-connected if for all vertices vi ∈ φ it holds that vi is connected to the d−(vi)
vertices in φ[1, i− 1] that have the highest remaining outdegree at position i− 1.

As a consequence of Definition 4 we show that in a well-connected dag the
potential at position i can be easily determined from that at position i − 1.

Lemma 4. Let φ = v1, . . . , vn be a topological ordering. Then, there is a well-
connected dag D such that φ is also a topological ordering for D. Furthermore,
for all 1 < i ≤ n and 1 ≤ j ≤ ∆ it holds that

pi[j] =






pi−1[j] if j < ∆ ∧ pi−1[j + 1] ≥ d−(vi),

pi−1[j]− (d−(vi)− pi−1[j + 1]) if j < ∆ ∧ pi−1[j] ≥ d−(vi),

pi−1[j + 1] if j < ∆ ∧ pi−1[j] < d−(vi),

max{0, pi−1[j]− d−(vi)} if j = ∆.

+

{
1 d+(vi) ≥ j,

0 otherwise

Proof. Consider a topological ordering φ = v1, . . . , vn for a dag D = (V,A) and
suppose that the vertex vi is not well-connected in D. The vertex vi needs
d−(vi) ingoing arcs from the vertices in φ[1, i − 1] and has d+(vi) outgoing
arcs to the vertices in φ[i + 1, n]. Since vi is not well-connected, there exist
two vertices vh, vl ∈ φ[1, i − 1] such that vl has lower remaining outdegree at
position i− 1 than vh and (vl, vi) ∈ A and (vh, vi) /∈ A. Moreover, since vh has
higher remaining outdegree at position i−1 than vl and (vh, vi) /∈ A, there exists
a vertex u ∈ φ[i+1, n] such that (vl, u) /∈ A and (vh, u) ∈ A. Thus, D′ = (V,A′)
with A′ := (A\{(vl, vi), (vh, u)}) ∪ {(vh, vi), (vl, u)} is also a dag such that φ
corresponds to D′. By iteratively performing this operation we obtain a dag in
which all vertices are well-connected.

Now, consider the well-connected dag D with corresponding topological or-
dering φ = v1, . . . , vn. Then, the potential pi computes from pi−1 as follows:
The d−(vi) ingoing arcs to vi decrease the outdegree of the d−(vi) vertices with
highest remaining outdegree at position i − 1 by one. Additionally, the ver-
tex vi has outdegree d

+(vi) and, thus, all pi[j] with d
+(vi) ≥ j are increased by

one.

Cut-out subsequences. The following lemma shows that if in a topological
ordering φ[1, n] there are two indices 1 ≤ i < j ≤ n with equal potential, then we
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can cut out φ[i+1, j] resulting in a topological ordering φ[1, i][j+1, n]. We later
show that we can reinsert φ[i+1, j] at any position that fulfills some reasonable
conditions. This is the main operation that we perform in order to “restructure”
a topological ordering such that we can exploit the resulting regular structure
in our algorithms.

Lemma 5. Let φ = v1, . . . , vn be a realizing topological ordering for the degree

sequence S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
. If there are two indices 1 ≤ i < j ≤ n such that

pφi = pφj , then the sequence φ′ = φ[1, i]φ[j+1, n] is a realizing topological ordering
for the degree sequence that results from S by deleting the degrees of the vertices

in φ[i+ 1, j]. Moreover, the potential pφ
′

i+l is equal to pφj+l for all 1 ≤ l ≤ n− j.

Proof. Let S =
(
a1

b1

)
, . . . ,

(
an

an

)
be a degree sequence and let 1 ≤ i < j ≤ n be two

indices such that in a realizing topological ordering φ = v1, . . . , vn it holds that
pφi = pφj . Denoting by S ′ the degree sequence that results from S by deleting
all the degrees of the vertices in φ[i + 1, j], we show that φ′ := φ[1, i]φ[j + 1, n]
is a realizing topological ordering for S ′.

Let V 1−i be all vertices in φ[1, i] that have at least one neighbor in φ[i+1, n]
and, correspondingly, let V 1−j be the vertices in φ[1, j] that have at least one
neighbor in φ[j + 1, n]. By the definition of a potential, for all 1 ≤ l ≤ ∆, the
number of vertices in φ[1, i] that have exactly l neighbors in φ[i+ 1, n] is equal
to the number of vertices in φ[1, j] that have exactly l neighbors in φ[j + 1, n].
Thus, there is a bijection f : V 1−j → V 1−i such that for all v ∈ V 1−j it holds
that vertex f(v) has the same number of neighbors in φ[i+1, n] as v in φ[j+1, n].
Thus, deleting in the dag that corresponds to φ the vertices in φ[i + 1, j] and
exchanging every arc from a vertex v ∈ φ[1, j] to a vertex u ∈ φ[j + 1, n] by
(f(v), u) results in a dag that is a realization for S ′. Note that the vertex at
position i+1 in φ′ is the same as the vertex at position j + 1 in φ. Since f is a
bijection it is clear that the potential at position i+ l in φ′ for 1 ≤ l ≤ n− j is
equal to the potential at position j + l in φ.

Lemma 5 shows that from a topological ordering φ we can cut out a subse-
quence φ[i + 1, j] whenever pφi = pφj . Informally speaking, we shall show that
the subsequence φ[i + 1, j] can be inserted into any topological ordering φ′ at
position b whenever there is “enough potential” from the left part φ′[1, b] to
satisfy the indegrees of φ[i, j]. Then, the structure of φ[i, j] guarantees that the
“remaining potential” of φ′[1, b]φ[i + 1, j] is sufficient to satisfy the indegree of
φ′[b + 1, n] and thus φ′[1, b]φ[i + 1, j]φ′[b + 1, n] is a topological ordering. We
need the following definition to formalize the conditions that φ[i + 1, j] has to
fulfill.

Definition 5. Let S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
be a degree sequence and let ps, pt ∈ N

∆

be two vectors. Furthermore, let P s be a degree sequence with maximum degree ∆
consisting of ps[1] elements such that for each 1 ≤ l ≤ ∆ there are exactly ps[l]
elements

(
0
b

)
where b ≥ l. Correspondingly, let P t be a degree sequence consisting

of ω(pt) entries, all of the form
(
1
0

)
. Let φ be a realizing topological ordering

for S ⊎ P s ⊎ P t where the vertices whose degrees correspond to P s (P t) are
the first (last) vertices. If the potential at position ps[1] + n is exactly pt, then
φ[ps[1] + 1, ps[1] + n] is a partial realizing topological ordering for S with input
potential ps and output potential pt.

11



. . . . . . . . . . . .

I G B E
pi pj

Figure 3: A realizing high potential topological ordering that corresponds to
the pattern I ◦ G ◦ B ◦ E. Thereby, I is a subsequence of length at most ∆2∆

such that the first high potential occurs at position i. Correspondingly, j is the
last position with high potential and E is a sequence of length at most ∆2∆.
The sequence G (resp., B) only consists of good (bad) type vertices but is of
arbitrary length. All high potential realizations can be reordered to fit into this
pattern.

Note that in Definition 5 for the realizing topological ordering φ for S⊎P s⊎
P t it holds that the potential at position ps[1] is ps, and by definition at position
ps[1]+n it is pt. Furthermore, for a realizing topological ordering φ = v1, . . . , vn,
for all 1 ≤ i < j ≤ n it holds that φ[i + 1, j] is a partial realizing topological
ordering with input potential pi and output potential pj .

4.2 High Potential Sequences

In order to show that DAG Realization is fixed-parameter tractable with re-
spect to the parameter maximum degree ∆, in this subsection we show that if a
realizable sequence admits a realizing topological ordering where at some posi-
tion the value of the potential is at least ∆2, a so-called high potential realizing
topological ordering, then there is also a realizing topological ordering φ that is
of the following “pattern” (see Figure 3 for an illustration): The ordering φ can
be partitioned into four sub-sequences I◦G◦B◦E (where ◦ is the concatenation).
The sequence I is an initializing sequence that “establishes” a potential of value
at least ∆2, a so-called high potential. Correspondingly, at the end there is a
sequence E that reduces the value of the potential from a value that is greater
than ∆2 to zero. Furthermore, I and E are of length at most ∆2∆ and thus can
be guessed in O((∆ + 1)2)∆

2∆

) = O(∆2∆2∆

) time. The subsequence G, which
is of arbitrary length, only consists of good types and, correspondingly, B is of
arbitrary length but only consists of bad types in arbitrary order.

Our strategy to prove that there is a high potential realizing topological
ordering with the pattern I ◦G ◦ B ◦ E is as follows. Let φ = v1, . . . , vn be an
arbitrary high potential realizing topological ordering and let i be the minimum
position with high potential and, symmetrically, let j be the maximum position
with high potential. In the first part of this subsection (see 1), we show that we
can assume that i ≤ ∆2∆ and j ≥ n −∆2∆. Towards this the main argument
is that if i > ∆2∆, since there are O(∆2∆) potentials with value less than ∆2,
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there have to be two positions 1 ≤ l1 < l2 < i with pl1 = pl2 . Then, by
Lemma 5, we can cut out φ[l1 + 1, l2] from φ and we will show (see Lemma 8)
that we can reinsert it right behind i, resulting in a realizing topological ordering
φ[1, l1]φ[l2+1, i]φ[l1+1, l2]φ[i+1, n]. By iteratively applying this operation, we
end up with a realizing topological ordering where the minimum position with
high potential is at most ∆2∆. A symmetric argument holds for the maximum
position j with high potential.

In the second part we show that we can arbitrarily sort the vertices in φ[i+
1, j] under the constraint that at first vertices of good type occur in any order,
and then they are followed by the bad type vertices (see 2). Altogether, this
shows that in order to check whether there is a high potential realizing topo-
logical ordering it is sufficient to branch into all possibilities to choose I and E,
insert the remaining vertices sorted by good and bad types between I and E,
and, finally, check whether this ordering is a topological ordering.

We first prove that if we have two partial realizing topological orderings φ1
and φ2 where φ1 has input potential 0∆ and φ2 has output potential 0∆ and the
output potential of φ1 is at “least as good” as the input potential of φ2, then
we can merge them to a realizing topological ordering φ1φ2 while preserving the
indegree and outdegree of all vertices. Before proving that, we define a partial
order for potentials.

Definition 6. For p, p′ ∈ N
∆, p ≥ p′ if ∀1 ≤ j ≤ ∆ :

∑j

i=1 p[i] ≥
∑j

i=1 p
′[i].

The intuition of Definition 6 is that a potential p is at least as good as
a potential p′ if subsequent vertices that can be connected with potential p′

can also be connected with potential p. To gurantee that there are enough
vertices of degree at least i, it either has to hold that p[i] ≥ p′[i] or there is
a sufficiently large “overhang” of vertices with degree less than i that are not
necessary to gurantee the existence of vertices with degree less than i. Formally,∑i−1

j=1 p[j]−
∑i−1

j=1 p
′[j] ≥ p′[i]− p[i].

Lemma 6. Let φ = v1, . . . , vn be a realizing topological ordering for a degree
sequence S, and let 1 ≤ i ≤ n be an arbitrary position. For any partial realizing
topological ordering φ′ for a degree sequence S ′ with input potential 0∆ and
output potential p ∈ N

∆ with ω(p) = ω(pφi ) and p ≥ pφi , the sequence φ
′φ[i+1, n]

is a realizing topological ordering for S ′ ⊎
{(

d−(vi+1)
d+(vi+1)

)
, . . . ,

(
d−(vn)
d+(vn)

)}
.

Proof. Let φ = v1, . . . , vn be a realizing topological ordering for a degree se-
quence S, and let 1 ≤ i ≤ n be an arbitrary position. Furthermore, let φ′

be a partial realizing topological ordering for a degree sequence S ′ with input
potential 0∆ and output potential p ∈ N

∆ with ω(p) = ω(pφi ) and p ≥ pφi (see
Definition 6). By Definition 5, there are two degree sequences P s and P t such
that there is a realizing topological ordering φ′s,t for P s ⊎ P t ⊎ S ′ where the
vertices that correspond to P s (P t) are the first (last) vertices.

We show that the sequence φ′φ[i + 1, n] is a realizing topological ordering

for S ′ ⊎
{(

d−(vi+1)
d+(vi+1)

)
, . . . ,

(
d−(vn)
d+(vn)

)}
. Therefore, we construct a dag D that corre-

sponds to φ′φ[i + 1, n] and thus is a realization. We first copy all arcs between
two vertices in φ[i+1, n] that are present in the dag for φ and, correspondingly,
all arcs between two vertices in φ′ that are present in the dag for φ′s,t. Now, the
potential in φ′ at position |φ′| is p. By the condition of Lemma 6, it holds that

p ≥ pφi and ω(p) = ω(pφi ).
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Now, we show how to connect the n−i vertices in φ[i+1, n] to their ancestors
in φ′. Specifically, for 1 ≤ r ≤ n− i, let vr be the rth vertex in φ[i + 1, n]. We
show how to connect the vertex vr to its ancestors such that the potential at
position |φ′|+ r in φ′φ[i+1, n], denoted by pr, is greater than pφi+r. To this end,
we use induction, meaning that we assume that the potential of pr−1 is greater
than pφi−1+r. (Clearly, at the beginning for r = 1, the direct ancestor of vr is

the last vertex of φ′, and thus we set p0 = p, implying that p0 = p ≥ pφi .) First,

since pr−1[1] ≥ pφi−1+r[1] it follows that we can well-connect vr to its ancestors.

Note that for all j, 1 ≤ j ≤ n− 1, it holds that ω(pj) = ω(pφi+j). We next prove

that for the resulting potential pr it holds that pr ≥ pφi+r. This completes our
argumentation.

To this end, denoting by c ∈ N∆ the vector that has ones in the first d+(vr)
rows and the remaining entries are zero, by the definition of potentials it is
clear that pr ≥ pφi+r ⇔ pr − c ≥ pφi+r − c. For the sake of readability we

substitute as follows f = pr−1, f− = pr − c, and e = pφi+r−1, e
− = pφi+r − c

and we shall show that f− ≥ e−. Note that from ω(f) = ω(e) it follows that
ω(f)− d−(vr) = ω(f−) = ω(e−). Towards a contradiction assume that there is
a position 1 ≤ l < ∆ such that

l∑

j=1

e−[j]− f−[j] > 0. (1)

Since f ≥ e, it follows that

l∑

j=1

f [j]− f−[j] >

l∑

j=1

e[j]− e−[j] (2)

and from this together with ω(f−) = ω(e−) we can infer that

∆∑

j=l+1

f [j]− f−[j] <

∆∑

j=l+1

e[j]− e−[j].

By Lemma 4 it follows that

∆∑

j=l+1

f [j]− f−[j] = f [l+ 1] and
∆∑

j=l+1

e[j]− e−[j] ≤ e[l+ 1]

From that and since ω(f) = ω(e) = ω(f−) + d−(vr) = ω(e−) + d−(vr), for
Inequality (2) it follows from Lemma 4 that




l∑

j=1

f [j]− f−[j]



−




l∑

j=1

e[j]− e−[j]



 =




l∑

j=1

f [j]− e[j]



+




l∑

j=1

e−[j]− f−[j]



 ≤ e[l+ 1]− f [l + 1] (3)
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Since from f ≥ e it follows that
∑l

j=1 f [j] − e[j] ≥ e[l + 1] − f [l + 1] and this
implies together with Inequality (3) that

l∑

j=1

e−[j]− f−[j] ≤ 0,

causing a contradiction to Inequality (1).

Lemma 6 shows that we can “merge” two partial realizing topological or-
derings φ1 and φ2 to φ1φ2, if for the output potential pφ1

o of φ1 and the input

potential pφ2

i it holds that pφ1
o ≥ pφ2

i and ω(pφ1

0 ) = ω(pφ2

i ). The next lemma

shows that the condition pφ1
o ≥ pφ2

i is not necessary in case of high potentials,

that is, ω(pφ1

0 ) = ω(pφ2

i ) ≥ ∆2. Before that, we need the following observation
showing that for a fixed value there is a potential that is less than all others.

Observation 3. For a fixed positive integer x let p ∈ N
∆ be the potential with

p[j] =

{⌈
x
∆

⌉
, if j ≤ x modulo ∆⌊

x
∆

⌋
, otherwise

for all 1 ≤ j ≤ ∆. Then, for all potentials p′ ∈ N
∆ with ω(p′) = ω(p) it holds

that p′ ≥ p.

Proof. Let p ∈ N
∆ be the potential as defined in Observation 3 and let p′ ∈ N

∆

be a potential with ω(p′) = ω(p). Clearly, by definition it holds that ω(p) =
x. Towards a contradiction assume that p′ < p. Hence, there is a position
1 ≤ j ≤ ∆ with

∑j

l=1 p[l] >
∑j

l=1 p
′[l]. From this it follows that there is

a position 1 ≤ t ≤ j such that p[t] > p′[t] and since p[t] ≤ ⌈x/∆⌉ it follows
that p′[t] ≤ ⌊x/∆⌋. Recall that, by definition, for any potential it holds that
p[l1] ≥ p[l2] for all 1 ≤ l1 ≤ l2 ≤ ∆. Thus, from p′[t] ≤ ⌊x/∆⌋ it follows that∑∆

l=j+1 p
′[l] ≤ (∆−j)⌊x/∆⌋ ≤

∑∆
l=j+1 p[l]. Together with

∑j

l=1 p[l] >
∑j

l=1 p
′[l]

this implies a contradiction to ω(p) = ω(p′).

Lemma 7. Let φ = v1, . . . , vn be a realizing topological ordering for a degree
sequence S and let ω(pφi ) ≥ ∆2 for some 1 ≤ i ≤ n. Then, for any partial
realizing topological ordering φ′ for a degree sequence S ′ with input potential 0∆

and output potential p with ω(p) = ω(pφi ), the sequence φ′φ[i+1, n] is a realizing

topological ordering for S ′ ⊎
{(

d−(vi+1)
d+(vi+1)

)
, . . . ,

(
d−(vn)
d+(vn)

)}
.

Proof. Let φ = v1, . . . , vn be a realizing topological ordering for a degree se-
quence S and let 1 ≤ i ≤ n be a position with ω(pφi ) ≥ ∆2. Furthermore, let φ′

be a partial realizing topological ordering with input potential 0∆ and output
potential p with ω(p) = ω(pφi ) = x. We shall show that φ′φ[i+1, n] is a realizing

topological ordering for S ′ ⊎
{(

d−(vi+1)
d+(vi+1)

)
, . . . ,

(
d−(vn)
d+(vn)

)}
. We prove Lemma 7 in

case of

p[j] =

{⌈
x
∆

⌉
, if j ≤ x modulo ∆⌊

x
∆

⌋
, otherwise

for all 1 ≤ j ≤ ∆. Then, Observation 3 and Lemma 6 imply its correctness in
the general case.
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In the following, we describe how to construct a dag that corresponds to
φ′φ[i+1, n]. We first add all arcs between two vertices in φ[1, i] that are present
in a dag for φ. Correspondingly, we add all arcs between two vertices that
are present in a dag for φ′. Observe that it now only remains to add the arcs
from a vertex in φ′ to φ[i + 1, n]. For a more convenient construction of these
arcs, assume that there are no arcs between two vertices in φ[i+ 1, n]. (Clearly,
because in the following we only add arcs having one endpoint in φ′ and the
other in φ[i+ 1, n], arcs between two vertices in φ[i+1, n] can be removed and,
correspondingly, the degrees in S can be adjusted. Afterwards, these arcs can
be reinserted.)

We next prove that it is possible to stepwise well-connect the vertices vi+r

for r = 1 to n− i to the vertices in φ′. By the assumption that there is no arc
between vertices in φ[i + 1, n], it holds that

∑
v∈φ[i+1,n] d

−(v) = ω(p) = ω(pφi ).

More specifically, denoting the potential at position |φ′| + r in φ′φ[i + 1, n]

by pr, it is clear that ω(pφi+r) = ω(pr). Now, towards a contradiction, assume
that for some 1 ≤ r ≤ n − i it is not possible to well-connect the vertex vi+r

to φ′φ[i + 1, i + r − 1]. Clearly, since we cannot connect vi+r, it holds that

pr−1[1] < d−(vi+r) ≤ pφi+r−1[1].
For 0 ≤ j ≤ r − 1 and for a vertex v ∈ φ′ consider the remaining outde-

gree d+j (v), that is, the outdegree of v minus the number arcs from v to any
vertex in φ′φ[i + 1, i + j]. Since we always choose the vertices with highest
remaining outdegree from φ′ to connect a vertex in φ[i + 1, n] it follows that

max{1, |d+j (v1)− d+j (v2)|} ≥ |d+j+1(v1)− d+j+1(v2)| (4)

for all 0 ≤ j < r−1 and v1, v2 ∈ φ′. Moreover, recall that, since x ≥ ∆2, p[∆] =
⌊x/∆⌋ ≥ ∆ and, thus, there are at least ∆ vertices L ⊆ φ′ with d+0 (v) = ⌊x/∆⌋.
Because of Inequality (4) it follows that ∀v1, v2 ∈ L : |d+r−1(v1)− d+r−1(v2)| ≤ 1.
Moreover, since pr−1[1] < d−(vi+r) ≤ ∆, there is a vertex v ∈ L such that
d+r−1(v) = 0 and thus d+r−1(w) ≤ 1 for all w ∈ L.

It remains to consider the vertex (by definition there can be at most one)
u ∈ φ′ \ L. Because the remaining outdegree can only decrease by one in each
step and d+r−1(v) = 0, there is a position 1 ≤ l ≤ r − 1 with d+l (v) = d+l (u)

and, thus, by Inequality (4) d+r−1(u) ≤ 1. Thus, d+r−1(v) ≤ 1 for all v ∈ φ′.

Hence, ω(pr−1) = pr−1[1] and ω(pr−1 = ω(pφi+r−1) imply a contradiction to

pr−1[1] < d−(vi+r) ≤ pφi+r−1[1].

While Lemma 5 shows that we can cut out a partial realizing topological
ordering with equal input and output potential, the following lemma shows
that we can reinsert it right behind a high potential in any realizing topological
ordering.

Lemma 8. Let φ be a realizing topological ordering for a degree sequence S.
Furthermore, let φ′ be a partial realizing topological ordering with equal input and
output potential p for a degree sequence S ′. Then, for any position 1 ≤ i ≤ |φ|

with ω(pφi ) ≥ ∆2 and ω(pφi ) ≥ ω(p) it holds that φ[1, i]φ′φ[i+1, n] is a realizing
topological ordering for S ⊎ S ′.

Proof. For a degree sequence S let φ be a realizing topological ordering and let
φ′ be a partial realizing topological ordering with input and output potential p
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for a degree sequence S ′. Furthermore, let 1 ≤ i ≤ |φ| be a position with

ω(pφi ) ≥ ∆2 and ω(pφi ) ≥ ω(p). We prove that φ[1, i]φ′φ[i + 1, n] is a realizing
topological ordering for S ⊎ S ′.

We first show that φ[1, i]φ′ is a partial realizing topological ordering with

input potential 0∆ and output potential p where ω(p) = ω(pφi ). Then, from
Lemma 7 it follows that φ[1, i]φ′φ[i + 1, |φ|] is a realizing topological ordering
for S ⊎ S ′.

By Definition 5 there are two degree sequences P s and P t such that there
is a realizing topological ordering φs,t = φsφ′φt for P s ⊎ P t ⊎ S ′ such that φs

contains the vertices that match to P s and φt that match to P t. Now, in
case of ω(pφi ) > ω(p) we extend P s by ω(pi) − ω(p) elements of type

(
1
0

)
and

P t by the same number of
(
0
1

)
type elements. This shows that φ′ is a partial

realizing topological ordering with input potential 0∆ and output potential p
with ω(p) = ω(pφi ).

From this together with Lemma 7 it follows that φ[1, i]φ′φt is a realizing
topological ordering. Since, by our assumption φ′ is a partial realizing topolog-
ical ordering with input and output potential p it follows that

∑
v∈φ′ d−(v) =∑

v∈φ′ d+(v). From this, since the potential at position i in φ[1, i]φ′φt is pφi it
follows that φ[1, i]φ′ is a partial realizing topological ordering with input po-

tential 0∆ and output potential p′ with ω(p′) = ω(pφi ). Thus, by Lemma 7 it
follows that φ[1, i]φ′φ[i+ 1, n] is a realizing topological ordering.

With Lemma 8 we are able to bound the minimum and maximum position
where a high potential occurs.

Proposition 1. If a DAG Realization instance admits a high-potential re-
alization, then there is also a high potential realizing topological ordering such
that the minimum position with high potential is at most ∆2∆ and the maximum
position with high potential is at least n−∆2∆.

Proof. Let φ be a high-potential realizing topological ordering and let 1 ≤ i ≤ n
be the minimum position where ω(pi) ≥ ∆2. Consider the case where i > ∆2∆.
Thus, for all 1 ≤ l < i it holds that ω(pl) < ∆2. However, there are less than ∆2∆

potentials with value less than ∆2 and, thus, there are two indices 1 ≤ l1 < l2 < i
with pl1 = pl2 . By Lemma 5, the sequence φ[1, l1]φ[l2 + 1, n] is a realizing
topological ordering where the potential at position i− (l2− l1) is pi. Moreover,
by definition φ[l1 + 1, l2] is a partial realizing topological ordering with input
and output potential pl1 where ω(pl1) < ω(pi). Thus, by Lemma 8 it holds that
φ[1, l1]φ[l2+1, i]φ[l1+1, l2]φ[i+1, n] is a realizing topological ordering. Moreover,
in this realizing topological ordering, since

∑
v∈φ[l1+1,l2]

d−(v) − d+(v) = 0,

the minimum position with high potential is i − (l2 − l1). Applying the same
operation iteratively as long as there are two positions with equal potential
before the first high-potential results in a realizing topological ordering where
the minimum position with high potential is at most ∆2∆.

Basically, the same argumentation can be applied for the maximum posi-
tion j where a high potential occurs. In case of j < n−∆2∆, there have to be
two indices j < l1 < l2 ≤ n where pl1 = pl2 . Then, by Lemma 5 the sequence
φ[1, l1]φ[l2 + 1, n] is a realizing topological ordering and φ[l1 + 1, l2] is a partial
realizing topological ordering with input and output potential pl1 with ω(l1) <
ω(pj). Thus, by Lemma 8 the sequence φ[1, j]φ[l1+1, l2]φ[j+1, l1]φ[l2+1, n] is a
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realizing topological ordering where the maximum position with high potential
is j + (l2 − l1). Again, by applying this operation iteratively we get a sequence
where the maximum position with high potential is at least n−∆2∆.

Having shown that we can assume that for the minimum position i and the
maximum position j with high potential it holds that i ≤ ∆2∆ and j ≥ n−∆2∆

we next prove that one can sort all vertices between i and j arbitrarily by good
and bad types.

Proposition 2. Let φ = v1, . . . , vn be a high potential realizing topological or-
dering for a degree sequence S and let 1 ≤ i < j ≤ n be two arbitrary indices
such that ω(pi) ≥ ∆2 and ω(pj) ≥ ∆2. Furthermore, let φ′[i+ 1, j] be a permu-
tation of the vertices in φ[i + 1, j] such that there is a position 0 ≤ l ≤ j − i
with the property that the first l vertices in φ′[i + 1, j] are of good type and all
subsequent vertices are of bad type. Then, the sequence φ[1, i]φ′[i+1, j]φ[j+1, n]
is a realizing topological ordering for S ′.

Proof. Assume that there is a high potential realizing topological ordering for
a degree sequence S with two indices 1 ≤ i ≤ j ≤ n such that ω(pi) ≥ ∆2 and
ω(pj) ≥ ∆2. We prove that φ[1, i]φ′[i+ 1, j]φ[j + 1, n] is a realizing topological
ordering for S for any reordering φ′[i + 1, j] of the vertices in φ[i + 1, j] where
first the vertices of good types are consecutive in any ordering and then are
followed by the bad type vertices.

To this end, by induction on l with 1 ≤ l ≤ j − i we show that the sequence
φ[1, i]φ′[i + 1, i+ l] is a partial realizing topological ordering with input poten-
tial 0∆ and output potential pl with ω(pl) ≥ ∆2. First, we well-connect the ver-
tex φ′[i+l, i+l] to the partial realizing topological ordering φ[1, i]φ′[i+1, i+l−1]
to get φ[1, i]φ′[i+1, i+ l]. This is always possible since the output potential pl−1

of φ[1, i]φ′[i + 1, i+ l − 1] is a high potential. It only remains to show that the
value of the output potential pl of φ[1, i]φ′[i+ 1, i+ l] is at least ∆2. Towards a
contradiction suppose that it is not. This implies

∑

v∈φ′[i+1,i+l]

d−(v) − d+(v) > ω(pi)−∆2. (5)

Clearly, the vertex φ′[i + l, i + l] has to be a bad type, otherwise Equation 5
cannot be true. However, it holds that

ω(pi)−
∑

v∈φ[i+1,j]

(d−(v)− d+(v)) = ω(pj) ≥ ∆2

and thus ∑

v∈φ[i+1,j]

d−(v)− d+(v) ≤ ω(pi)−∆2. (6)

Since φ′[i + 1, j] is sorted by good and bad types and φ′[i + l, i + l] is of bad
type, all vertices in φ′[i + l, j] are bad type vertices. Thus, Equation 6 yields a
contradiction to Equation 5.

1 and 2 lead to the central contribution of this section.

Theorem 2. If a DAG Realization instance admits a high potential realizing
topological ordering, then it can be solved in O(∆4∆2∆

· n) time.

18



· · ·

Figure 4: Realization for the sequence
(
0
2

)
,
(
0
4

)
,
(
2
1

)
,
(
3
4

)
,
(
2
1

)
,
(
3
4

)
,
(
2
1

)
,
(
3
4

)
, . . . ,

(
2
1

)
,
(
3
4

)
,(

2
0

)
,
(
2
0

)
,
(
1
0

)
,
(
1
0

)
. Since this sequence basically consists of only two different

types (not regarding types with indegree or outdegree equal to zero), it is easy
to check that the pictured low potential realization (the highest occurring value
of a potential is six) is the only existing one. The main part of the realizing
topological ordering consists of a repetition of

(
2
1

)
,
(
3
4

)
.

Proof. If an instance of DAG Realization admits a high potential realizing
topological ordering, then by 1 there is also a high potential realizing topological
ordering in which the occurrence of the first high potential is at most at position
∆2∆ and the last occurrence of a high potential is at least at position n−∆2∆.
Recall that there are at most (∆ + 1)2 types of elements in the given degree
sequence, and thus by exhaustive search we can find these two subsequences
in time O(∆4∆2∆

· n). 2 shows that the remaining degrees can be arbitrarily
inserted between them, as long as they are sorted by good and bad types.

4.3 Low Potential Sequences

In this section, we will provide an algorithm that finds a low potential realization
(if it exists) for a DAG Realization instance. That is, a realization such that
in the corresponding topological ordering the value of all potentials is strictly
less than ∆2. See Figure 4 for an example of such a realization.

The crucial point to give an algorithm which solves such instances is that,
besides some “special gaps” which can be handled afterwards, the length of a
corresponding realizing topological ordering can be upper bounded by a func-
tion f only depending on the maximal degree ∆. Then, the algorithm, basi-
cally, consists of branching into all realizing topological orderings of length of
at most f(∆) and, then, filling up the “special gaps” afterwards.

In the following we describe how to upper-bound the length. To this end,
we introduce some notation.

Definition 7. In a topological ordering φ = v1, . . . , vn and for 1 ≤ i < j ≤ n,
φ[i, j] is a super-type si,j of potential p ∈ N

∆ if pφi−1 = pφj = p and all potentials
from position i till j − 1 are different from p.

Note that, by the definition of super-types, cutting out any super-type from
the topological ordering results, by Lemma 5, again in a topological ordering.
We use this fact later in order to reorder topological orderings.
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Definition 8. A k-repetition of a super-type s in a topological ordering φ is a
subsequence ψ of φ with ψ = sk, that is, k subsequent occurrences of s. If k is
maximal under this condition, then it is called a maximal k-repetition.

Since in the low potential case the values of the occurring potentials in
any realizing topological ordering φ is upper-bounded by ∆2, it follows that
the number of different occurring potentials is upper-bounded by ∆2∆. Hence,
there are potentials that occur multiple times in φ.

In Figure 4 an example for a realizable degree sequence is given where
the only existing realizing topological ordering consists basically of one big
k-repetition of the super-type

(
2
1

)
,
(
3
4

)
of potential (2, 2, 1, 1)T . To solve such

instances, the algorithm works in two steps. First, it guesses a so-called non-
repeating ordering, that is a realizing topological ordering where all maximal k-
repetitions are replaced by one occurrence of the corresponding super-type. As
one can see in Figure 4, in this example the non-repeating ordering is very short:(
0
2

)
,
(
0
4

)
,
(
2
1

)
,
(
3
4

)
,
(
2
0

)
,
(
2
0

)
,
(
1
0

)
,
(
1
0

)
, where

(
2
1

)
,
(
3
4

)
is the repeating super-type in a

realizing topological ordering. Indeed, for any degree sequence S admitting
a low potential realization there exists a “short” non-repeating ordering (see
Lemma 11). Then, the non-repeating ordering can be computed by exhaustive
search and, afterwards, the algorithm computes, based on an ILP (integer lin-
ear program) formulation, the missing k-repetitions (see Lemma 12). Next, we
formalize the idea of non-repeating orderings.

Definition 9. Let φ = v1, . . . , vn be a realizing topological ordering for a DAG

Realization instance S. The ordering φ′, that results from φ by replacing
each maximal k-repetition, 2 ≤ k ≤ n, by a 1-repetition of the corresponding
super-type is called non-repeating ordering.

Given a non-repeating ordering φ′ and a DAG Realization instance S, we
say a topological ordering φ respects φ′ if φ′ results from replacing all maximal
k-repetitions by 1-repetitions for each super-type in φ.

In order to prove that the length of non-repeating orderings can be bounded
in a function solely depending on ∆, we need a “reordering operation” for topo-
logical orderings, similar to the high potential case. Cutting out any super-
type from the topological ordering results, by the definition of super-types and
Lemma 5, in a topological ordering. In the high potential case we have rein-
serted the cut out parts right behind a high potential. Since in the low potential
case there exists no high potential we need to show another way to insert the
parts that we cut out. Therefore, the next lemma shows that a partial realizing
topological ordering with input and output potential p can be reinserted in a
realizing topological ordering at any position i with potential p.

Lemma 9. Let S be a degree sequence with a realizing topological ordering
φ = v1, . . . , vn. Furthermore, for a degree sequence S ′ let φ′ be a partial realizing
topological ordering with input and output potential p. Then, for all indices
1 ≤ i ≤ n where pφi = p, the ordering φ′′ = φ[1, i]φ′φ[i + 1, n] is a realizing

topological ordering for S ⊎ S ′ with pφj = pφ
′′

j+|φ′| for all i < j ≤ n.

Proof. Let φ = v1, . . . , vn be a realizing topological ordering for a degree se-
quence S and let φ′ be a partial realizing topological ordering for a degree
sequence S ′ with input and output potential p ∈ N

∆. By Definition 5 there
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are degree sequences P s and P t such that there is a realizing topological order-
ing φ′s,t for S

′⊎P s⊎P t. Furthermore, in φ′s,t the first (last) vertices correspond
to P s (P t, respectively).

We show that for the order φ[1, i]φ′φ[i + 1, n] there is a dag D that corre-
sponds to it, and thus is a realization for S⊎S ′. We first copy from the dag that
corresponds to φ all arcs between two vertices in φ[1, i] and all arcs between two
vertices in φ[i + 1, n] into D. Correspondingly, from the dag that corresponds
to φ′s,t we copy all arcs between two vertices in φ′ into D. In the following we
shall describe how to connect the remaining three “components” φ[1, i], φ′, and
φ[i + 1, n] in D.

For 1 ≤ l ≤ ∆, let V l
φ[1,i] be the vertices in φ[1, i] that have exactly l

neighbors in φ[i + 1, n]. Symmetrically, let V l
P s be the vertices in φ′s,t[1, |P

s|]

that have exactly l neighbors in φ′s,t[|P
s| + 1, |φ′s,t|]. Clearly, since p = pφi , for

all 1 ≤ l ≤ ∆ it follows that |V l
φ[1,i]| = |V l

P s | and thus there is a bijection h :(⋃∆
l=1 V

l
P s

)
→

(⋃∆
l=1 V

l
φ[1,i]

)
such that for v ∈ V l

P s it holds that f(v) ∈ V l
φ[1,i].

We now connect the two “components” φ[1, i] and φ′ by adding for each arc
(u, v) with u ∈ φ′s,t[1, |P

s|] and v ∈ φ′ the arc (h(u), v) to D. Since h is a
bijection it is clear that we have not introduced parallel arcs and the indegrees
of the vertices φ′ in D now matches its element entries in S ′.

We now consider in D the vertices in φ[1, i]φ′ whose outdegree is less than
the outdegree in their corresponding element entry in S ⊎ S ′. We denote this
as the outgoing gap of such a vertex. The set of vertices with outgoing gap
greater than zero is a subset of the vertices in

⋃l

i=1 V
l
φ[1,i] and the vertices in

φ′ that have in φ′s,t neighbors in φ′s,t[|P
s| + |φ′| + 1, |φ′s,t|]. We will use these

vertices to connect the two remaining “components” φ[1, i]φ′ and φ[i + 1, n].
More specifically, for each 1 ≤ l ≤ ∆ let V l

φ[1,i]φ′ be the vertices in φ[1, i]φ′ with

outgoing gap exactly l. Since h is a bijection and the output potential of φ′

is p, it follows that there is a bijection g :
(⋃l

i=1 V
l
φ[1,i]

)
→

(⋃l

i=1 V
l
φ[1,i]φ′

)
.

Thus, for every arc (v, u) with v ∈ φ[1, i] and u ∈ φ[i + 1, n] we add the arc
(g(v), u) to D. Since g is a bijection it follows that we have not introduced
parallel arcs and the indegrees and outdegrees of all vertices correspond to their
elements in S ⊎ S ′. Thus, the resulting dag D with topological ordering φ′′ is a

realization for S ⊎ S ′ and pφj = pφ
′′

j+|φ′| for all i < j ≤ n.

Combining the cut operation from Lemma 5 and the insert operation from
Lemma 9 we arrive at the following lemma describing our “reordering opera-
tion”.

Lemma 10. Let S be a degree sequence with a realizing topological ordering
φ = v1, . . . , vn. Let 1 ≤ i < j < k ≤ n be three positions with pi = pj = pk.
Then the ordering φ[1, i]φ[j + 1, k]φ[i + 1, j]φ[k + 1, n] is a realizing topological
ordering for S.

With Lemma 10, it is easy to see that we can reorder any topological order-
ing φ such that there is only one consecutive occurrence of a super-type s, that
is, beside on maximal k-repetition of s there are no further occurrences of s
in φ.

Next, we show that we can bound the number and the length of super-types
in a non-repeating ordering φ′ for a DAG Realization instance S by some
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function only depending on the parameter ∆. This allows to determine the
non-repeating ordering by brute force in running time only depending on ∆.

Lemma 11. Let S be a realizable DAG Realization instance. If there is
a low potential realization for S, then there exists a non-repeating ordering φ′

for S and a realizing topological ordering φ for S that respects φ′ such that the
length of any repeating super-type in φ is bounded by ∆2∆ and the length of φ′

is bounded by ∆2∆(∆2∆2∆+2∆ +∆2∆).

Proof. Let φ = v1, . . . , vn be a low potential realizing topological ordering for S.
Let P = p0, . . . , pn be the corresponding sequence of potentials with values
strictly less than ∆2. By definition p0 = pn = 0∆. We now construct a non-
repeating ordering φ′ from φ.

Let p be a potential. We denote by firstP(p) the position of the first oc-
currence of p in P . Let p be the potential with firstP(p) > firstP(q) for all
potentials q 6= p, and p and q occur in P . That is, p is the potential that oc-
curs at last. Let i1, . . . , iℓ be the occurrences of p in P . We now show how to
construct a non-repeating ordering with ij − ij−1 ≤ ∆2∆ for all 1 < j ≤ ℓ.

Assume that there is a j ∈ {2, . . . , ℓ} such that ij − ij−1 > ∆2∆. Since
we assume in this subsection that the value of any occurring potential is lower
than ∆2, this gives less than ∆2∆ possible potentials. Hence, there are two
positions ij−1 < h1 < h2 < ij such that ph1 = ph2 =: q. Since firstP(p) >
firstP(q) there is a position k with k < i1 with pk = q. By Lemma 10, φ[1, k] ·
φ[h1+1, h2]·φ[k+1, h1]·φ[h2+1, n] is also a realizing topological ordering. After

exhaustively applying this procedure we have a realizing topological ordering φ̃
where the occurrences of p are ĩ1, . . . , ĩℓ with ĩj − ĩj−1 < ∆2∆. By the same

argument, we can assume that n − ĩℓ < ∆2∆ since every potential occurs at
most once in φ̃[̃il, n]. Thus, there are at most O(∆2∆2∆

) many different super-
types of potential p. Since these super-types are of the same potential p, they
can be reordered by using Lemma 10 such that there is at most one subsequent
occurrence of each super-type of potential p. Thus, in a non-repeating ordering
each super-type of potential p occurs at most once and, hence, the part with the
super-types of potential p has length at most O(∆2∆2∆

∆2∆) = O(∆2∆2∆+2∆).

Hence, the length of φ̃[̃i1, n] can be upper-bounded by O(∆2∆2∆+2∆ +∆2∆).
So far, the longest repeating super-type is of potential p and of length at

most ∆2∆. It remains to bound the length of φ̃[1, ĩ1 − 1]. Note that the poten-

tial p does not occur in φ̃[1, ĩ1−1]. Now, we can iteratively apply this procedure

to deal with the other potentials in φ̃[1, ĩ1 − 1]. By iteratively applying the de-
scribed procedure for the at most ∆2∆ different potentials, the length of the
resulting non-repeating ordering is at most O(∆2∆(∆2∆2∆+2∆ +∆2∆)).

In each iteration the repeating super-types that are deleted through the
non-repeating ordering notion is of the particular potential dealt with in the
iteration. Hence, the length of the longest such deleted repeating super-type
is at most ∆2∆. Thus, by reverting all the deletion steps, we get a realizing
topological ordering for S such that the length of the longest repeating super-
type is at most ∆2∆.

Using Lemma 11, the algorithm branches in all possibilities for non-repeating
orderings of length at most O(∆2∆(∆2∆2∆+2∆+∆2∆)) < ∆3∆2∆

for sufficiently
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large ∆. This gives at most ∆2∆3∆2∆

cases. Lemma 4 shows that by well-
connecting the corresponding vertices one can easily check whether the non-
repeating ordering v1, . . . , vℓ is a realizing topological ordering for the degree

sequence
{(

d−(v1)
d+(v1)

)
, . . . ,

(
d−(vℓ)
d+(vℓ)

)}
. For a non-repeating ordering, the algorithm

checks which of the (∆2)∆
2∆

= ∆2∆2∆

possibly repeating super-types occur in
the sequence of the particular case and stores the occurring ones in a set T S .
Then, given a non-repeating ordering φ′ for a DAG Realization instance S
and the set of T S super-types that may repeat, the problem of computing a
realizing topological ordering that respects φ′ is fixed-parameter tractable with
respect to the number of super-types in T S . We shall show an ILP formulation
for this problem. To this end, we formalize the problem and call it Sequence
Filling.

Sequence Filling

Input: A multiset S =
{(

a1

b1

)
, . . . ,

(
an

bn

)}
, a non-repeating ordering φ′

and a set of all super-types T S = {s1, . . . , sℓ} of φ′ that have
length at most ∆2∆.

Question: Is there a realizing topological ordering φ for S that respects φ′

such that φ′ results from replacing for each s ∈ T S all maximal
k-repetitions of s in φ by one occurrence of s?

Next, we show fixed-parameter tractability of Sequence Filling with respect
to the parameter |T S | = k. Since the number k of super-types is bounded by
a function only depending on ∆, this completes our algorithm for the case that
an input of DAG Realization only admits a low potential realization.

Lemma 12. Sequence Filling is fixed-parameter tractable with respect to the
parameter |T S | = k.

Proof. We show the fixed-parameter tractability by giving an ILP-formulation of
the problem with O(k) variables. Lenstra [15] proved that ILP with p variables
can be solved in O(p4.5p · L) time where L is the input size.

To solve the Sequence Filling instance, we use the following ILP-formulation:

∀1 ≤ i ≤ k : fi ≥ 0 (7)

∀e ∈ S :
k∑

i=1

fi · o(e, si) = o(e,S)− o(e, φ′) (8)

Here, the function o(e,M) denotes the number of occurrences of the element e
in the multiset (or sequence)M . The ILP uses the k integer variables f1, . . . , fk
and consists of k + |S| equations that have together a size of O(k · |S|). Hence,
the ILP can be solved in O(k4.5k · k · |S|) time.

Now we describe how we use the solution of the ILP-formulation to create
a realizing topological ordering φ as described in the problem definition of Se-
quence Filling. For each super-type si ∈ T S with fi > 0 insert a fi-repetition
of s right after an occurrence of s in φ′. By Lemma 9, the ordering that re-
sults from adding the k-repetitions results in a realizing topological ordering
for φ′ ⊎

⊎
i,fi>0

⊎fi
j=1 si = S.

Next, we show that if the Sequence Filling-instance is a yes-instance,
there exists a solution for our ILP-formulation. If there is a realizing topological
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ordering φ for S that respects φ′, then there exists a set of super-types TS such
that replacing all maximal k-repetitions of super-types si in TS in φ by one
occurrence of the corresponding super-type results in φ′. Clearly, TS ⊆ T S .
Set fi = 0 for each si ∈ T S\TS and for all si ∈ TS set fi = k−1 where φ contains
a maximal k-repetition of s. Thus, Inequality (7) is fulfilled for all 1 ≤ i ≤ k.
Since φ is a realizing topological ordering for S, Inequality (8) is fulfilled.

Combining Lemma 11 and Lemma 12 shows fixed-parameter tractability for

the low potential case. The running time in this case is O(∆2∆3∆2∆

) for checking

all non-repeating orderings, O(∆2∆2∆

· ∆2 · n) for constructing the Sequence

Filling instance, andO(∆2∆2∆6∆2∆2∆

·∆2∆2∆

·n) for solving the ILP. Altogether
we have the following theorem.

Theorem 3. If a degree sequence admits a low potential realizing topological

ordering, then it can be found in ∆∆∆O(∆)

· n time.

Theorems 2 and 3 together lead to the main theorem of this section.

Theorem 4. DAG Realization is fixed-parameter tractable with respect to
the parameter maximum degree ∆.

Note that this is a mere classification result: The running time is ∆∆∆O(∆)

·n.
It is dominated by the low potential case.

5 Conclusion and Open Questions

Answering an open question by Berger and Müller-Hannemann [1] we proved
the NP-completeness of DAG Realization. Following the spirit of decon-
structing intractability we figured out the necessity of large degrees in the NP-
hardness proof by showing fixed-parameter tractability for DAG Realization

with respect to the maximum degree ∆. The natural questions whether DAG

Realization is solvable in single-exponential time and whether it admits a
polynomial-size problem kernel with respect to the parameter ∆ arises. In our
NP-hardness reduction other parameters occur with unbounded values, for in-
stance, the number of types. Investigating this parameter is an interesting task
for future work.
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alization goes to Annabell Berger and Matthias Müller-Hannemann. More-
over, we are grateful to Rolf Niedermeier for inspiring discussions and helpful
comments improving the presentation.
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