Abstract
The Graph Minors Theory, developed by Robertson and Seymour, has been one of the most influential mathematical theories in parameterized algorithm design. We present some of the basic algorithmic techniques and methods that emerged from this theory. We discuss its direct meta-algorithmic consequences, we present the algorithmic applications of core theorems such as the grid-exclusion theorem, and we give a brief description of the irrelevant vertex technique.
This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: “Thalis. Investing in knowledge society through the European Social Fund”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast Minor Testing in Planar Graphs. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 97–109. Springer, Heidelberg (2010)
Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 641–650. Society for Industrial and Applied Mathematics, Philadelphia (2008)
Adler, I., Kolliopoulos, S.G., Krause, P.K., Lokshtanov, D., Saurabh, S., Thilikos, D.: Tight Bounds for Linkages in Planar Graphs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 110–121. Springer, Heidelberg (2011)
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)
Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145(2), 219–231 (2005); Structural Decompositions, Width Parameters, and Graph Labelings
Alber, J., Niedermeier, R.: Improved Tree Decomposition Based Algorithms for Domination-like Problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 613–627. Springer, Heidelberg (2002)
Amir, E.: Approximation algorithms for treewidth. Algorithmica 56, 448–479 (2010)
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)
Betzler, N., Niedermeier, R., Uhlmann, J.: Tree decompositions of graphs: Saving memory in dynamic programming. Discrete Optimization 3(3), 220–229 (2006); Graphs and Combinatorial Optimization
Bienstock, D., Dean, N.: On obstructions to small face covers in planar graphs. J. Combin. Theory Ser. B 55(2), 163–189 (1992)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: STOC, pp. 67–74. ACM (2007)
Bodlaender, H., Fomin, F., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.: (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009). ACM (2009)
Bodlaender, H.L.: Dynamic Programming on Graphs with Bounded Treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy. In: Twenty-sixth Annual ACM Symposium on Theory of Computing (STOC 1994), pp. 449–458. ACM, New York (1994)
Bodlaender, H.L., Telle, J.A.: Space-efficient construction variants of dynamic programming. Nordic J. Comput. 11(4), 374–385 (2004)
Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)
Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. System Sci. 67(4), 789–807 (2003)
Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On computing graph minor obstruction sets. Theor. Comput. Sci. 233, 107–127 (2000)
Chlebíková, J.: The structure of obstructions to treewidth and pathwidth. Discrete Applied Mathematics 120(1-3), 61–71 (2002)
Courcelle, B., Downey, R.G., Fellows, M.R.: A note on the computability of graph minor obstruction sets for monadic second order ideals. In: First Japan-New Zealand Workshop on Logic in Computer Science, Auckland, vol. 3, pp. 1194–1198 (1997) (electronic)
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011), pp. 150–159. IEEE Computer Society (2011)
Dahan, X., Tillich, J.-P.: Ramanujan graphs of very large girth based on octonions. CoRR, arXiv:1011.2642 (November 2010-2011)
Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: 21st IEEE Symposium on Logic in Computer Science (LICS 2007), pp. 270–279. IEEE, New York (2007)
Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FST-TCS 2009), pp. 157–168 (2009)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional parameters and local treewidth. SIAM J. Discrete Math. 18(3), 501–511 (2004) (electronic)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)
Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 590–601. ACM, New York (2005) (electronic)
Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with applications through bidimensionality. Combinatorica 28(1), 19–36 (2008)
Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: Improved grid minor bounds and Wagner’s contraction. Algorithmica 54(2), 142–180 (2009)
Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of bounded-genus graphs. SIAM J. Discrete Math. 20(2), 357–371 (2006)
Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer (2005)
Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets and the excluded grid theorem. J. Combin. Theory Ser. B 75(1), 61–73 (1999)
Dinneen, M.J.: Too many minor order obstructions (for parameterized lower ideals). In: First Japan-New Zealand Workshop on Logic in Computer Science, Auckland, vol. 3(11), pp. 1199–1206 (1997) (electronic)
Dorn, F.: Dynamic Programming and Fast Matrix Multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)
Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)
Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming in H-minor-free graphs. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 631–640. SIAM (2008)
Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)
Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a graph. Information and Computation 113(1), 50–79 (1994)
Erdős, P., Sachs, H.: Reguläre graphen gegebener tailenweite mit minimaler knollenzahh. Wiss. Z. Univ. Halle-Willenberg Math. Nat. 12, 251–258 (1063)
Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)
Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. System Sci. 49(3), 769–779 (1994)
Flum, J., Grohe, M.: Parameterized Complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)
Fomin, F.V., Daniel Lokshtanov, S.S., Thilikos, D.M.: Linear kernels for (connected) dominating set on h-minor-free graphs. In: 23st ACM–SIAM Symposium on Discrete Algorithms (SODA 2012). ACM-SIAM, San Francisco (2012)
Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction obstructions for treewidth. J. Comb. Theory, Ser. B 101(5), 302–314 (2011)
Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden minors: Approximation and kernelization. In: STACS, pp. 189–200 (2011)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 748–759. ACM-SIAM, San Francisco (2011)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)
Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: 23st ACM–SIAM Symposium on Discrete Algorithms (SODA 2012). ACM-SIAM, San Francisco (2012)
Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), Austin, Texas, pp. 503–510. ACM-SIAM (2010)
Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006) (electronic)
Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)
Friedman, H., Robertson, N., Seymour, P.D.: The metamathematics of the graph minor theorem. In: Logic and Combinatorics (Arcata, Calif., 1985). Contemp. Math., vol. 65, pp. 229–261. Amer. Math. Soc., Providence (1987)
Friedman, H.M.: Internal finite tree embeddings. In: Reflections on the foundations of mathematics (Stanford, CA, 1998). Lect. Notes Log., vol. 15, pp. 60–91. Assoc. Symbol. Logic, Urbana (2002)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin. Theory, Ser. B 16(1), 47–56 (1974)
Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.P.: On the excluded minors for the matroids of branch-width k. J. Combin. Theory Ser. B 88(2), 261–265 (2003)
Giannopoulou, A.C., Thilikos, D.M.: Obstructions for tree-depth. Electronic Notes in Discrete Mathematics 34, 249–253 (2009)
Giannopoulou, A.C., Thilikos, D.M.: Optimizing the graph minors weak structure theorem. CoRR, arXiv:1102.5762 (February 2011)
Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Induced Packing of Odd Cycles in a Planar Graph. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 514–523. Springer, Heidelberg (2009)
Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC 2011), pp. 479–488 (2011)
Gu, Q.-P., Tamaki, H.: Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 85–96. Springer, Heidelberg (2010)
Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized Complexity of Vertex Deletion into Perfect Graph Classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 240–251. Springer, Heidelberg (2011)
Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011), pp. 217–228 (2011)
Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2(3), 326–336 (1952)
Ito, T., Kamiński, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a graph by the number of their components. Theor. Comput. Sci. 412(45), 6340–6350 (2011)
Johnson, D.S.: The NP-completeness column: An ongoing guide. Journal of Algorithms 8(2), 285–303 (1987)
Kamiński, M., Nishimura, N.: Finding an induced path of given parity in planar graphs in polynomial time. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 656–670. ACM (2012)
Kamiński, M., Thilikos, D.M.: Contraction checking in graphs on surfaces. In: 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012), pp. 182–193 (2012)
Kawarabayashi, K.: Half integral packing, Erdős-Pósa-property and graph minors. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 1187–1196. Society for Industrial and Applied Mathematics, Philadelphia (2007)
Kawarabayashi, K.: Planarity allowing few error vertices in linear time. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 639–648 (2009)
Kawarabayashi, K., Kobayashi, Y.: The edge disjoint paths problem in eulerian graphs and 4-edge-connected graphs. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 345–353. Society for Industrial and Applied Mathematics, Philadelphia (2010)
Kawarabayashi, K., Kobayashi, Y.: An improved algorithm for the half-disjoint paths problem. SIAM J. Discrete Math. 25(3), 1322–1330 (2011)
Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. Journal of Combinatorial Theory, Series B (2011)
Kawarabayashi, K., Kreutzer, S., Mohar, B.: Linkless and flat embeddings in 3-space and the unknot problem. In: Proceedings of the 2010 Annual Symposium on Computational Geometry, SoCG 2010, pp. 97–106. ACM, New York (2010)
Kawarabayashi, K., Li, Z., Reed, B.A.: Recognizing a totally odd K4-subdivision, parity 2-disjoint rooted paths and a parity cycle through specified elements. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 318–328 (2010)
Kawarabayashi, K., Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 771–780 (2008)
Kawarabayashi, K., Reed, B.A.: Hadwiger’s conjecture is decidable. In: 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pp. 445–454 (2009)
Kawarabayashi, K., Reed, B.A.: Odd cycle packing. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 695–704 (2010)
Kawarabayashi, K., Wollan, P.: A shorter proof of the graph minor algorithm: the unique linkage theorem. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 771–780 (2008)
Kneis, J., Langer, A.: A practical approach to courcelle’s theorem. Electron. Notes Theor. Comput. Sci. 251, 65–81 (2009)
Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem - a game-theoretic approach. CoRR, arXiv:1104.3905 (April 2011)
Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 1146–1155. ACM-SIAM (2009)
Koutsonas, A., Thilikos, D.M., Yamazaki, K.: Outerplanar obstructions for matroid pathwidth. In: EuroComb 2011: European Conference on Combinatorics, Graph Theory and Applications (2011)
Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second-order logic. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 354–364. Society for Industrial and Applied Mathematics, Philadelphia (2010)
Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Amer. Math. Soc. 95, 210–225 (1960)
Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)
Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. Journal of Algorithms 20(1), 20–44 (1996)
Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Combin. Theory, Ser. B 73, 7–40 (1998)
Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 760–776 (2011)
Lovász, L.: Graph minor theory. Bull. Amer. Math. Soc. (N.S.) 43(1), 75–86 (2006) (electronic)
Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)
Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822 (2012)
Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12(1), 6–26 (1999)
Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Proc. Cambridge Philos. Soc. 59, 833–835 (1963)
Neumann, B.H.: On ordered division rings. Trans. Amer. Math. Soc. 66, 202–252 (1949)
Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)
Parsons, T.D.: Pursuit-evasion in a graph. In: Proceedings Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976, Theory and Applications of Graphs. Lecture Notes in Math., vol. 642, pp. 426–441. Springer, Berlin (1978)
Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Discrete Math. 10(1), 146–157 (1997)
Reed, B.A.: Finding approximate separators and computing tree width quickly. In: Twenty-Fourth Annual ACM Symposium on Theory of Computing (STOC 1992), pp. 221–228. ACM Press (1992)
Reed, B.A., Wood, D.R.: Polynomial treewidth forces a large grid-like-minor. Eur. J. Comb. 33(3), 374–379 (2012)
Robertson, N., Seymour, P.D.: Graph minors. I. excluding a forest. J. Combin. Theory, Ser. B 35, 39–61 (1983)
Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Combin. Theory, Ser. B 36(1), 49–64 (1984)
Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)
Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B 41(1), 92–114 (1986)
Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)
Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems (1992) (preprint)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Combin. Theory, Ser. B 63(1), 65–110 (1995)
Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Series B 77, 1–27 (1999)
Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)
Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages. J. Combin. Theory Ser. B 99(3), 583–616 (2009)
Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. J. Combin. Theory Ser. B 100(2), 181–205 (2010)
Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62(2), 323–348 (1994)
Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for Graphs on Surfaces. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 372–383. Springer, Heidelberg (2010)
Rué, J., Stavropoulos, K.S., Thilikos, D.M.: Outerplanar obstructions for the feedback vertex set. Electronic Notes in Discrete Mathematics 34, 167–171 (2009)
Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical Report 396/1994, FU Berlin, Fachbereich 3 Mathematik (1994)
Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the family of graphs with bounded path-width. Disc. Math. 127(1-3), 293–304 (1994); Graph theory and applications, Hakone (1990)
Thilikos, D.M.: Algorithms and obstructions for linear-width and related search parameters. Discrete Applied Mathematics 105, 239–271 (2000)
van Leeuwen, J.: Graph algorithms. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pp. 525–631. Elsevier Science (1990)
van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)
Wagner, K.: Über eine eigenschaft der ebenen komplexe. Mathematische Annalen 114, 570–590 (1937), 10.1007/BF01594196
Weiss, A.: Girths of bipartite sextet graphs. Combinatorica 4(2-3), 241–245 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Thilikos, D.M. (2012). Graph Minors and Parameterized Algorithm Design. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds) The Multivariate Algorithmic Revolution and Beyond. Lecture Notes in Computer Science, vol 7370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30891-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-30891-8_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30890-1
Online ISBN: 978-3-642-30891-8
eBook Packages: Computer ScienceComputer Science (R0)