Abstract
The parameterized problem \(p\textsc{-Halt}\) takes as input a nondeterministic Turing machine \(\mathbb{M}\) and a natural number n, the size of \(\mathbb{M}\) being the parameter. It asks whether every accepting run of \(\mathbb{M}\) on empty input tape takes more than n steps. This problem is in the class XPuni, the class “uniform XP,” if there is an algorithm deciding it, which for fixed machine \(\mathbb{M}\) runs in time polynomial in n. It turns out that various open problems of different areas of theoretical computer science are related or even equivalent to \(p{\rm \textsc{-Halt}\in{XP}_{uni}}\). Thus this statement forms a bridge which allows to derive equivalences between statements of different areas (proof theory, complexity theory, descriptive complexity, …) which at first glance seem to be unrelated. As our presentation shows, various of these equivalences may be obtained by the same method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumann, Y., Dombb, Y.: Fixed Structure Complexity. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 30–42. Springer, Heidelberg (2008)
Buhrman, H., Hitchcock, J.M.: NP-hard sets are exponentially dense unless coNP ⊆ NP/poly. In: Proceedings of the 23rd Annual IEEE Conference on Computational Complexity (CCC 2008), Electronic Colloquium on Computational Complexity (ECCC 2008), Report TR08 022, pp. 1–7 (2008), http://eccc.hpi-web.de/eccc-local/Lists/TR-2008.html
Buss, S., Chen, Y., Flum, J., Friedman, S., Müller, M.: Strong isomorphism reductions in complexity theory. The Journal of Symbolic Logic 76(4), 1381–1402 (2011)
Cai, L., Chen, J., Downey, R., Fellows, M.: the parameterized complexity of short computation and factorization. Archive for Mathematical Logic 36, 321–337 (1997)
Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67, 654–685 (2003)
Cesati, M., Di Ianni, M.: Computation models for parameterized complexity. Mathematicall Logical Quarterly 43, 179–202 (1997)
Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. Journal of the ACM 28, 114–133 (1981); 77–90 (1977)
Chen, Y., Flum, J.: On the complexity of Gödel’s proof predicate. The Journal of Symbolic Logic 75, 239–254 (2009)
Chen, Y., Flum, J.: A Logic for PTIME and a Parameterized Halting Problem. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Gurevich Festschrift. LNCS, vol. 6300, pp. 251–276. Springer, Heidelberg (2010)
Chen, Y., Flum, J.: On p-Optimal Proof Systems and Logics for PTIME. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 321–332. Springer, Heidelberg (2010)
Chen, Y., Flum, J.: On Slicewise Monotone Parameterized Problems and Optimal Proof Systems for TAUT. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 200–214. Springer, Heidelberg (2010)
Chen, Y., Flum, J.: Listings and logics. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011), pp. 165–174 (2011)
Cook, S.: The complexity of theorem proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)
Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)
Downey, R., Fellows, M.: Fixed-parameter tractability and commpleteness III: Some structurl aspects of the W-hierarchy. In: Ambos-Spies, K., et al. (eds.) Complexity Theory, pp. 166–191 (1993)
Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
Downey, R.: Private communication
Fagin, R.: Generalized first–order spectra and polynomial–time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)
Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31, 113–145 (2001)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
Fortnow, L., Grochow, J.: Complexity classes of equivalence problems revisited, arXiv:0907.4775v1, [cs.CC] (2009)
Hartmanis, J., Hemachandra, L.: Complexity classes without machines: On complete languages for UP. Theoretical Computer Science 58, 129–142 (1988)
Immerman, N.: Relational queries computable in polynomial time. Information and Control 68, 86–104 (1986)
Köbler, J., Messner, J.: Complete problems for promise classes by optimal proof systems for test sets. In: Proceedings of the 13th IEEE Conference on Computational Complexity (CCC 1998), pp. 132–140 (1998)
Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for promise classes. Information and Computation 184, 71–92 (2003)
Kowalczyk, W.: Some Connections Between Presentability of Complexity Classes and the Power of Formal Systems of Reasonning. In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 364–369. Springer, Heidelberg (1984)
Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54, 1063–1088 (1989)
Levin, L.: Universal search problems. Problems of Information Transmission 9(3), 265–266 (1973) (in Russian); (english translation) Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force search) algorithms. Annals of the History of Computing 6(4), 384–400 (1984)
Messner, J., Torán, J.: Optimal Proof Systems for Propositional Logic and Complete Sets. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 477–487. Springer, Heidelberg (1998)
Monroe, H.: Speedup for natural problems and noncomputability. Theoretical Computer Science 412(4-5), 478–481 (2011)
Nash, A., Remmel, J.B., Vianu, V.: PTIME Queries Revisited. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 274–288. Springer, Heidelberg (2005)
Sadowski, Z.: On an optimal propositional proof system and the structure of easy subsets. Theoretical Computer Science 288(1), 181–193 (2002)
Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Society 2, 230–265 (1936)
Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC 1982), pp. 137–146 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chen, Y., Flum, J. (2012). A Parameterized Halting Problem. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds) The Multivariate Algorithmic Revolution and Beyond. Lecture Notes in Computer Science, vol 7370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30891-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-30891-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30890-1
Online ISBN: 978-3-642-30891-8
eBook Packages: Computer ScienceComputer Science (R0)