Abstract
Trusted execution environments (TEEs) are widely deployed both on mobile devices as well as in personal computers. TEEs typically have a small amount of physically secure memory but they are not enough to realize certain algorithms, such as authenticated encryption modes, in the standard manner. TEEs can however access the much larger but untrusted system memory using which “pipelined” variants of these algorithms can be realized by gradually reading input from, and/or writing output to the untrusted memory. In this paper, we motivate the need for pipelined variants of authenticated encryption modes in TEEs, describe a pipelined version of the EAX mode, and prove that it is as secure as standard, “baseline”, EAX. We point out potential pitfalls in mapping the abstract description of a pipelined variant to concrete implementation and discuss how these can be avoided. We also discuss other algorithms which can be adapted to the pipelined setting and proved correct in a similar fashion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ARM. Trustzone-enabled processor, http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
Bellare, M., Rogaway, P.: The game playing technique (2004), http://eprint.iacr.org/2004/331
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS 1993: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM, New York (1993)
Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004), doi:10.1007/978-3-540-25937-4-25
Boldyreva, A., Taesombut, N.: Online Encryption Schemes: New Security Notions and Constructions. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 1–14. Springer, Heidelberg (2004), doi:10.1007/978-3-540-24660-2-1
Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line Encryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 145–159. Springer, Heidelberg (2004), doi:10.1007/978-3-540-24654-1-11
GlobalPlatform Device Technology. TEE Internal API Specification. Global Platform, vrtsion 0.27 edition (September 2011), http://www.globalplatform.org/specificationform.asp?fid=7762
Intel Corporation. Trusted eXecution Technology (TXT) – Measured LaunchedEnvironment Developer’s Guide (December 2009)
Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with open provisioning. In: ASIACCS 2009: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, pp. 104–115. ACM, New York (2009)
Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz, M.: Architectural support for copy and tamper resistant software. SIGPLAN Not. 35(11), 168–177 (2000)
Srage, J., Azema, J.: M-Shield mobile security technology, TI White paper (2005), http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
Edward Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Efficient memory integrity verification and encryption for secure processors. In: MICRO 36: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, p. 339. IEEE Computer Society, Washington, DC (2003)
Edward Suh, G., O’Donnell, C.W., Sachdev, I., Devadas, S.: Design and implementation of the aegis single-chip secure processor using physical random functions. In: ISCA 2005: Proceedings of the 32nd Annual International Symposium on Computer Architecture, pp. 25–36. IEEE Computer Society, Washington, DC (2005)
Sundaresan, H.: OMAP platform security features, TI White paper (July 2003), http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf
Trusted Platform Module (TPM) Specifications, https://www.trustedcomputinggroup.org/specs/TPM/
Chenyu, Y., Rogers, B., Englender, D., Solihin, D., Prvulovic, M.: Improving cost, performance, and security of memory encryption and authentication. In: 33rd International Symposium on Computer Architecture, ISCA 2006, Boston, MA, pp. 179–190 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ekberg, JE., Afanasyeva, A., Asokan, N. (2012). Authenticated Encryption Primitives for Size-Constrained Trusted Computing. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds) Trust and Trustworthy Computing. Trust 2012. Lecture Notes in Computer Science, vol 7344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30921-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-30921-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30920-5
Online ISBN: 978-3-642-30921-2
eBook Packages: Computer ScienceComputer Science (R0)