Lecture Notes in Computer Science

7315

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Alfred Kobsa

University of California, Irvine, CA, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

TU Dortmund University, Germany

Madhu Sudan

Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

Stefano A. Cerri William J. Clancey Giorgos Papadourakis Kitty Panourgia (Eds.)

Intelligent Tutoring Systems

11th International Conference, ITS 2012 Chania, Crete, Greece, June 14-18, 2012 Proceedings

Volume Editors

Stefano A. Cerri

LIRMM: University of Montpellier and CNRS 161 rue Ada, 34095 Montpellier, France

E-mail: cerri@lirmm.fr

William J. Clancey

NASA and Florida Institute for Human and Machine Cognition Human Centered Computing - Intelligent Systems Division Moffett Field, CA 94035, USA

E-mail: william.j.clancey@nasa.gov

Giorgos Papadourakis

Technological Educational Institute of Crete School of Applied Technology Department of Applied Informatics and Multimedia Stavromenos, P.O. Box 1939 71004 Heraklion, Crete, Greece

E-mail: papadour@cs.teicrete.gr

Kitty Panourgia Neoanalysis Ltd.

Marni 56, 10437 Athens, Greece E-mail: kpanourgia@neoanalysis.eu

ISSN 0302-9743 ISBN 978-3-642-30949-6 DOI 10.1007/978-3-642-30950-2 e-ISSN 1611-3349 e-ISBN 978-3-642-30950-2

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939156

CR Subject Classification (1998): I.2.6, J.4, H.1.2, H.5.1, J.5, K.4.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 11th International Conference on Intelligent Tutoring Systems, ITS 2012, was organized in Chania, Crete, Greece, during June 14–18, 2012. The Call for Papers is printed here to relate the conference's motivation and theme:

The Intelligent Tutoring Systems (ITS) 2012 conference is part of an on-going biannual series of top-flight international conferences (the ITS conference was launched in 1988) on technologies—systems—that enable, support or enhance human learning. This occurs by means of tutoring in the case of formal learning—and by exposing learners to rich interactive experiences—in the case of learning as a side effect (informal learning). The "intelligence" of these systems stems from the modelbased artificial intelligence technologies often exploited to adapt to the learners (e.g., semantic technologies, user modeling) and also from how today's technologies (e.g., the Web and service-oriented computing methods) facilitate new emergent collective behaviors. These new practices may outperform previously conceivable learning or tutoring scenarios because they modify significantly the power, speed, and focus of participants' interactions independently from space and time constraints. The highly interdisciplinary ITS conferences bring together researchers in computer science, informatics, and artificial intelligence on the one side (the "hard" sciences); cognitive science, educational psychology, and linguistics on the other (the "soft" sciences).

The specific theme of the ITS 2012 conference is co-adaptation between technologies and human learning. There are nowadays two real challenges to be faced by ITS. The main technical challenge is due to the unprecedented speed of innovation that we notice in Information and Communication Technologies (ICT), in particular, the Web. Any technology seems to be volatile, of interest for only a short time span. The educational challenge is a consequence of the technical one. Current educational uses of technologies have to consider the impact of ICT innovation on human practices. In particular, new technologies may modify substantially the classical human learning cycle, which since the nineteenth century was mainly centered on formal teaching institutions such as the schools. Educational games are an example of how instructional practice adapts to innovation; another is the measurable role of emotions in learning.

Therefore, our focus for ITS 2012 will be not just on the use of technologies but also the co-adaptation effects. Rapidly evolving technologies entail significant new opportunities and scenarios for learning, thus support the need for analyzing the intersection between new learning practices and innovative technologies to advance both methods and theory for

human learning. This approach especially enables "learning by constructing," in much the same way as the Web Science movement adds to the classical Web technologies. A new design priority has emerged: reasoned analysis of human communities in different interaction contexts before deploying or applying a new infrastructure or application.

On the one hand this scientific analysis will guide us to avoid well-known pitfalls, on the other it will teach us lessons not only about how to exploit the potential learning effects of current advanced technologies—the applicative approach—but also how to envision, elicit, estimate, evaluate the potential promising effects of new technologies and settings to be conceptualized, specified and developed within human learning scenarios—the experimental approach. We expect this experimental approach to produce long-term scientific progress both in the hard and in the soft sciences, consolidating at the same time important socio-economic benefits from the new infrastructures and the new applications for human learning.

As a result of the Call for Papers, we received more than 200 different contributions evaluated by chairs of four different tracks: the Scientific Paper Track (Chairs: Stefano A. Cerri and William J. Clancey), the Young Researcher Track (Chairs: Roger Azevedo and Chad Lane), the Workshop and Tutorial Track (Chairs: Jean Marc Labat and Rose Luckin). One Panel: "The Next Generation: Pedagogical and Technological Innovations for 2030" were organized by the Panel Chairs: Beverly Woolf and Toshio Okamoto.

For the scientific paper track, we provide a summary of the statistics at the end of the preface. In addition, 14 out of 15 Young Researcher Track papers were accepted, five workshops and two tutorials. There have been four outstanding invited speakers whose contributions have been included in the electronic version of the proceedings.

The scientific papers were evaluated with the help of a popular conference management tool, EasyChair, which was an excellent example of co-adaptation: we were impressed by the space of potential variations in the business process definition and management that is available thanks to the online tool. We believe that the "configuration" choices may have a significant impact on the positive quality of the resulting program.

We chose to assign three "junior" reviewers and one "senior" reviewer to each paper in order to delegate as much as possible to a team of four reviewers the difficult selection task. With the help of EasyChair, we carefully checked the fit of the paper's topics with the reviewer's selected topics of expertise and avoided conflict of interests due to proximity, historical, or professional relations.

The process was triple blind: reviewers did not know the authors' names, authors did not know the reviewers' names, and reviewers did not know the other reviewers' names. We guided the evaluation process by means of an evaluation form suggesting to accept about 15% of long papers, 15-30% of short papers and 30% of posters. The reviewer's evaluations naturally respected our suggestions: out of 177 papers, we accepted 134, consisting of 28 long (16%), 50 short

(28%) and 56 posters (32%). In our view, the quality of long papers is excellent, short papers are good papers, and posters present promising work that deserves attention and discussion.

The decision taken by the senior reviewer was respected in almost all cases, with a very limited number of exceptions that always involved raising the rank of the paper. Our conviction is that the reviewers were very critical, but also extremely constructive, which was confirmed by most of the exchanges with the authors after notification of the decision. The authors of the rejected papers also benefited from a careful review process, with feedback that we hope will help them to improve the quality of the presentations.

We can state without any doubt that ITS 2012 was a very selective, high-quality conference, probably the most selective in the domain.

On the one hand, we wished to guarantee a high acceptance rate and therefore participation at the conference. On the other, we wished to reduce the number of parallel tracks and enable papers accepted as short or long to be attended by most of the participants in order to enhance the historical interdisciplinary nature of the conference and the opportunity for a mutual learning experience. We also wished to increase the number of printed pages in the proceedings for each paper. The result has been to allow ten pages for long papers, six for short ones, and two for posters. The Young Researcher Track's 14 papers are also included in the proceedings (three pages).

The classification by topic in the book reflects viewpoints that are necessarily subjective. What appears as a major phenomenon is that the domain of ITS is becoming increasingly intertwined: theory and experiments, analysis and synthesis, planning and diagnosis, representation and understanding, production and consumption, models and applications. It has not been easy to sort the papers according to topics. In the sequencing of papers in the book, we have tried as much as possible to reflect the sequence of papers in the conference sessions.

We thank first of all the authors, then the members of the Program Committee and the external reviewers, the Steering Committee and in particular Claude Frasson and Beverly Woolf, both present, supportive and positive all the time, the local Organizing Committee, finally each and all the other organizers that are listed on the following pages. Such an event would not have been possible without their commitment, professional effort and patience.

April 2012

Stefano A. Cerri William J. Clancey Giorgios Papadourakis Kitty Panourgia

STATISTICS

By Topic

Торіс	Submissions	Accepted	Acceptance Rate	PC Members
Evaluation, privacy, security and trust in e-learning processes	4	2	0.50	5
Ubiquitous and mobile learning environments	5	4	0.80	33
Ontological modeling, Semantic web technologies and standards for learning	7	4	0.57	30
Non-conventional interactions between artificial intelligence and human learning	8	6	0.75	25
Recommender systems for learning	9	4	0.44	31
Informal learning environments, learning as a side effect of interactions	12	10	0.83	32
Multi-agent and service-oriented architectures for learning and tutoring environments	12	8	0.67	22
Instructional design principles or design patterns for educational environments	21	14	0.67	23
Authoring tools and development methodologies for advanced learning technologies	21	12	0.57	34
Discourse during learning interactions	22	20	0.91	17
Co-adaptation between technologies and human learning	22	13	0.59	26
Virtual pedagogical agents or learning companions	23	17	0.74	37
Collaborative and group learning, communities of practice and social networks	23	18	0.78	49
Simulation-based learning, intelligent (serious) games	33	29	0.88	48
Modeling of motivation, metacognition, and affect aspects of learning	33	23	0.70	38
Empirical studies of learning with technologies, understanding human learning on the Web	35	27	0.77	42

Topic	Submissions	Accepted	Acceptance Rate	PC Members
Domain-specific learning domains, e.g., language, mathematics, reading, science, medicine, military, and industry	36	27	0.75	23
Educational exploitation of data mining and machine learning techniques	38	30	0.79	30
Adaptive support for learning, models of learners, diagnosis and feedback	61	44	0.72	64
Intelligent tutoring	79	62	0.78	66

By Country

Country	Authors	Submitted papers
Algeria	2	1.00
Australia	10	4.00
Austria	-	-
Brazil	21	8.02
Canada	40	17.54
Costa Rica	1	0.11
Czech Republic	2	1.00
Denmark	1	1.50
Egypt	1	0.33
Finland	1	1.00
France	31	11.53
Germany	12	3.87
Greece	13	4.83
Hong Kong	2	0.20
India	7	4.33
Ireland	-	-
Italy	-	-
Japan	24	9.75

Country	Authors	Submitted papers
Korea, Republic of	-	-
Latvia	1	0.33
Mexico	2	0.67
The Netherlands	9	3.00
New Zealand	8	4.17
Philippines	6	1.06
Portugal	4	1.00
Romania	4	2.67
Saudi Arabia	2	1.33
Singapore	-	-
Slovakia	-	-
Slovenia	6	1.33
Spain	23	6.25
Switzerland	5	0.71
Taiwan	8	2.00
Tunisia	2	1.33
United Kingdom	15	7.08
United States	178	75.04

Committees

Conference Committee

Conference Chair

George M. Papadourakis Technological Educational Institute of Crete,

Greece

General Chair

Maria Grigoriadou University of Athens, Greece

Program Chairs

Stefano A. Cerri (Chair) LIRMM: University of Montpellier and CNRS,

France

William J. Clancey

(Co-chair) NASA and Florida Institute for Human and

Machine Cognition, USA

Organization Chair

Kitty Panourgia Neoanalysis, Greece

Workshops and Tutorials Chairs

Jean Marc Labat Pierre and Marie Curie University, France

Rose Luckin Institute of Education, UK

Panels Chairs

Beverly Woolf University of Massachussetts, USA

Toshio Okamoto University of Electro-Communications, Japan

Young Researcher Track Chairs

Roger Azevedo McGill University, Canada

Chad Lane University of Southern California, USA

Program Committee

Program Chairs

Stefano A. Cerri (Chair) LIRMM: University of Montpellier and CNRS,

France

William J. Clancey

(Co-chair) NASA and Florida Institute for Human and

Machine Cognition, USA

Senior Program Committee

Esma Aimeur University of Montreal, Canada Vincent Aleven Carnergie Mellon University, USA Ivon Arroyo University of Massachusetts, USA Kevin Ashley University of Pittsburgh, USA

Ryan Baker Worcester Polytechnic Institute, USA Joseph Beck Worcester Polytechnic Institute, USA

Gautam Biswas Vanderbilt University, USA

Jacqueline Bourdeau Tele-université, Montreal, Quebec, Canada Bert Bredeweg University of Amsterdam, The Netherlands

Paul Brna University of Edinburgh, UK
Peter Brusilovsky University of Pittsburgh, USA
Chan Tak-Wai National Central University, Taiwan
Cristina Conati University of British Columbia, Canada

Ricardo Conejo University of Malaga, Spain Albert Corbett Carnegie Mellon University, USA

Elisabeth Delozanne University Pierre et Marie Curie, France

Vania Dimitrova University of Leeds, UK Benedict Du Boulay University of Sussex, UK

Isabel Fernandez-Castro
Claude Frasson
Guy Gouarderes
Art Graesser
Peter Hastings
University of Basque Country, Spain
University of Montreal, Canada
University of Pau, France
University of Memphis, USA
DePaul University, USA

Neil Heffernan Worcester Polytechnic Institute, USA

W. Lewis Johnson Alelo Inc., USA

Kenneth Koedinger Carnergie Mellon University, USA Jean-Marc Labat Universite Pierre et Marie Curie, France

Susanne Lajoie McGill University, Canada

H. Chad Lane University of Southern California, USA James Lester North Carolina State University, USA

Diane Litman University of Pittsburgh, USA

Chee-Kit Looi National Institute of Education, Singapore

Rosemary Luckin University of Sussex, UK

Gordon Mccalla University of Saskatchewan, Canada Tanja Mitrovic University of Canterbury, New Zealand

Riichiro Mizoguchi Osaka University, Japan

Jack Mostow Carnegie Mellon University, USA

Roger Nkambou University of Quebec at Montreal, Canada Stellan Ohlsson University of Illinois at Chicago, USA

Toshio Okamoto University of Electro-Communications, Japan Ana Paiva INESC-ID and Instituto Superior Tecnico,

Technical University of Lisbon, Portugal

Niels Pinkwart Clausthal University of Technology, Germany

Carolyn Rose Carnegie Mellon University, USA Kurt Van Lehn Arizona State University, USA Julita Vassileva University of Saskatchewan, Canada

Rosa Vicari The Federal University of Rio Grande do Sul,

Brazil

Maria Virvou University of Piraeus, Greece Vincent Wade Trinity College Dublin, Ireland

Gerhard Weber University of Education Freiburg, Germany

Beverly Woolf University of Massachusetts, USA Kalina Yacef University of Sydney, Australia

Program Committee

Mohammed Abdelrazek King Abdulaziz University, Saudi Arabia

Luigia Aiello University of Rome, Italy Colin Alison St. Andrews University, UK

Ana Arruarte University of the Basque Country, Spain

Roger Azevedo McGill University, Canada

Tiffany Barnes University of North Carolina at Charlotte, USA

Beatriz Barros University of Malaga, Spain

Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia

Ig Bittencourt Federal University of Alagoas, Brazil

Emmanuel G. Blanchard Aalborg University at Copenhagen, Denmark

Steve Blessing University of Tampa, USA

Joost Breuker University of Amsterdam, The Netherlands

Nicola Capuano University of Salerno, Italy Patricia Charlton London Knowledge Lab, UK

Zhi-Hong Chen National Central University, Taiwan

Chih-Yueh Chou Yuan Ze University, Taiwan

Evandro Costa Federal University of Alagoas, Brazil

Scotty Craig University of Memphis, USA Alexandra Cristea University of Warwick, UK Sydney D'Mello **Hugh Davis** Michel Desmarais Cyrille Desmoulins Darina Dicheva Pierre Dillenbourg

Peter Dolog Pascal Dugenie

Robert Farrell Vasco Furtado Franca Garzotto Abdelkader Gouaich

Yusuke Hayashi Tsukasa Hirashima Seiii Isotani Patricia Jaques

Clement Jonquet Pamela Jordan Vana Kamtsiou Akihiro Kashihara Kathy Kikis-Papadakis Yong Se Kim Philippe Lemoisson Stefanie Lindstaedt

Chao-Lin Liu Vincenzo Loia Manolis Mavrikis Riccardo Mazza

Germana Menezes Da Nobrega Alessandro Micarelli Kazuhisa Miwa Paul Mulholland

Chas Murray Wolfgang Nejdl Jean-Pierre Pecuchet Alexandra Poulovassilis

University of Memphis, USA University of Southampton, UK Polytechnique Montreal, Canada University of Grenoble, France Winston-Salem State University, USA Ecole Polytechnique Federale de Lausanne, Switzerland

Aalborg University, Denmark IRD: Institut de Recherche pour le Développement, France IBM Research, USA

University of Fortaleza, Brazil Politecnico di Milano, Italy

LIRMM: University of Montpellier and CNRS, France

Osaka University, Japan Hiroshima University, Japan University Sao Paulo, Brazil

Universidade do Vale do Rio dos Sinos

(UNISINOS), Brazil

University of Montpellier - LIRMM, France

University of Pittsburgh, USA Brunel University, London, UK

University of Electro-Communications, Japan

FORTH, Crete, Greece

Sungkyunkwan University, Republic of Corea

CIRAD - TETIS, Montpellier, France Graz University of Technology and Know-Center, Austria

National Chengchi University, Taiwan

University of Salerno, Italy

London Knowledge Laboratory, UK

University of Lugano/University of Applied

Sciences of Southern Switzerland.

Switzerland

Universidade de Brasilia (UnB), Brazil University of Roma, Italy Nagoya University, Japan Knowledge Media Institute, The Open

University, UK

Carnegie Learning, Inc., USA

L3S and University of Hannover, Germany

INSA Rouen, France University of London, UK

Andrew Ravenscroft University of East London, UK Genaro Rebolledo-Mendez University of Veracruz, Mexico Ma. Mercedes T. Rodrigo Ateneo de Manila University, Philippines Ido Roll University of British Columbia, Canada Paulo Salles University of Brasilia, Brazil Jacobijn Sandberg University of Amsterdam, The Netherlands Sudeshna Sarkar Indian Institute of Technology Kharagpur, India Hassina Seridi Badji Mokhtar Annaba University, Algeria Mike Sharples The Open University, UK Peter B. Sloep The Open University, The Netherlands John Stamper Carnegie Mellon University, USA Akira Takeuchi Kyushu Institute of Technology, Japan Josie Taylor Institute of Educational Technology, Open University, UK Thanassis Tiropanis University of Southampton, UK Stefan Trausan Matu Bucarest Polytechnic, Romania Andre Tricot University of Toulouse, France Wouter Van Joolingen University of Twente, The Netherlands University of Southampton, UK Su White

Educational Testing Service, USA

Technological Institute of Culiacan, Mexico

Organization Committee

Diego Zapata-Rivera Ramon Zatarain-Cabada

Chair

Kitty Panourgia Neoanalysis, Greece

Members

Dimosthenis Akoumianakis
Yannis Kaliakatsos
Emmanuel S. Karapidakis
Athanasios Malamos
Harris Papoutsakis
Konstantinos Petridis
George Triantafilides
TEI of Crete, Greece

Treasurer: Neoanalysis

Student Volunteers Chairs

Pierre Chalfoun University of Montreal, Canada

Mediterranean Committee

Chair

Mohammed Abdelrazek King Abdulaziz University, Saudi Arabia

Members

Amar Balla ENSI, Algeria

Stephane Bernard Bazan Université Saint Joseph de Beyrouth, Lebanon

Isabel Fernandez-Castro University of Basque Country, Spain Khaled Guedira Institut Supérieur de gestion, Tunisia

Gianna Martinengo Didael KTS, Milan, Italy

Kyparisia Papanikolaou School of Pedagogical & Technological

Education, Greece

Steering Committee

Chair

Claude Frasson University of Montreal, Canada

Members

Stefano Cerri University of Montpellier, France

Isabel Fernandez-Castro University of the Basque Country, Spain University of Quebec at Montreal, Canada

Guy Gouardères University of Pau, France

Mitsuru Ikeda Japan Advanced Institute of Science and

Technology, Japan

Marc Kaltenbach Bishop's University, Canada Judith Kay University of Sidney, Australia Alan Lesgold University of Pittsburgh, USA

James Lester North Carolina State University, USA Roger Nkambou University of Quebec at Montreal, Canada Fabio Paragua Federal University of Alagoas, Brazil

Fabio Paragua Federal University of Alagoas, Elliot Soloway University of Michigan, USA

Daniel Suthers

University of Michigan, USA

University of Hawai, USA

Beverly Woolf University of Massachussets, USA

External Reviewers

Adewoyin, Bunmi Cheney, Kyle
Alrifai, Mohammad Chiru, Costin
Bourreau, Eric Cialdea, Marta
Campbell, Antoine Delestre, Nicolas
Chauncey, Amber Doran, Katelyn

Elorriaga, Jon A.

Falakmasir, Mohammad Hassan

Floryan, Mark Foss, Jonathan Gkotsis, George

Gonzalez-Brenes, Jose Grieco, Claudia

Gross, Sebastian Guarino, Giuseppe Gutierrez Santos, Sergio

Guzmán, Eduardo Hayashi, Yugo Henze, Nicola Herder, Eelco Hicks, Drew

Johnson, Matthew Kojima, Kazuaki Koriche, Fred Labaj, Martin Larrañaga, Mikel Le, Nguyen-Thinh Lehman, Blair Lehmann, Lorrie Limongelli, Carla Lomas, Derek

Mangione, Giuseppina

Martin, Maite Mazzola, Luca Miranda, Sergio Morita, Junya Nickel, Andrea Orciuoli, Francesco Pardos, Zach Pardos, Zachary Peckham, Terry Pierri, Anna Pinheiro, Vladia Rebedea, Trajan

Rebedea, Traian Ruiz, Samara Sciarrone, Filippo Scotton, Joshua Sharipova, Mayya

Shaw, Erin Steiner, Christina M. Stepanyan, Karen Sullins, Jeremiah Thomas, John Thomas, Keith

Thomas, Keith Trausan-Matu, Stefan Tvarozek, Jozef Urretavizcaya, Maite van Lehn, Kurt

Vasconcelos, José Eurico

Wu, Kewen

Yudelson, Michael Zipitria, Iraide Šimko, Marián

Workshops

Intelligent Support for Exploratory Environments: Exploring, Collaborating, and Learning Together

Toby Dragon, Sergio Gutierrez Santos, Manolis Mavrikis, and Bruce M. Mclaren

Workshop on Self-Regulated Learning in Educational Technologies (SRL@ET): Supporting, Modelling, Evaluating, and Fostering Metacognition with Computer-Based Learning Environments

Amali Weerasinghe, Roger Azevedo, Ido Roll, and Ben Du Boulay

Intelligent Support for Learning in Groups Jihie Kim and Rohit Kumar

Emotion in Games for Learning Kostas Karpouzis, Georgios N. Yannakakis, Ana Paiva, and Eva Hudlicka

Web 2.0 Tools, Methodology, and Services for Enhancing Intelligent Tutoring Systems

Mohammed Abdel Razek and Claude Frasson

Tutorials

Important Relationships in Data: Magnitude and Causality as Flags for What to Focus on Joseph Beck (WPI)

Parameter Fitting for Learner Models
Tristan Nixon (Carnegie Learning Inc.), Ryan S.J.D. Baker (WPI),
Michael Yudelson (CMU), and Zach Pardos (WPI)

Scientific Sponsors

The following scientific associations have granted their scientific support to the conference; their members benefit from a special registration rate.

Association for the Advancement of Artificial Intelligence (AAAI)

Association des Technologies de l'Information pour l'Education et la Formation

International Artificial Intelligence in Education Society

The conference benefits also from the sponsoring of the following renowned conferences:

- IJCAI: International Joint Conference in Artificial Intelligence
- ECAI : European Conference in Artificial Intelligence
- EDM: Educational Data Mining

Table of Contents

Affect: Emotions

Implicit Strategies for Intelligent Tutoring Systems	1
Rudeness and Rapport: Insults and Learning Gains in Peer Tutoring Amy Ogan, Samantha Finkelstein, Erin Walker, Ryan Carlson, and Justine Cassell	11
On Pedagogical Effects of Learner-Support Agents in Collaborative Interaction	22
Exploration of Affect Detection Using Semantic Cues in Virtual Improvisation	33
Measuring Learners Co-Occurring Emotional Responses during Their Interaction with a Pedagogical Agent in MetaTutor	40
Visualization of Student Activity Patterns within Intelligent Tutoring Systems David Hilton Shanabrook, Ivon Arroyo, Beverly Park Woolf, and Winslow Burleson	46
Toward a Machine Learning Framework for Understanding Affective Tutorial Interaction	52
Exploring Relationships between Learners' Affective States, Metacognitive Processes, and Learning Outcomes	59
Mental Workload, Engagement and Emotions: An Exploratory Study for Intelligent Tutoring Systems	65

Affect: Signals

Real-Time Monitoring of ECG and GSR Signals during Computer-Based Training	72
Categorical vs. Dimensional Representations in Multimodal Affect Detection during Learning	78
Md. Sazzad Hussain, Hamed Monkaresi, and Rafael A. Calvo Cognitive Priming: Assessing the Use of Non-conscious Perception to Enhance Learner's Reasoning Ability	84
Games: Motivation and Design	
Math Learning Environment with Game-Like Elements: An Incremental Approach for Enhancing Student Engagement and Learning Effectiveness	90
Motivational Factors for Learning by Teaching: The Effect of a Competitive Game Show in a Virtual Peer-Learning Environment Noboru Matsuda, Evelyn Yarzebinski, Victoria Keiser, Rohan Raizada, Gabriel Stylianides, and Kenneth R. Koedinger	10
An Analysis of Attention to Student-Adaptive Hints in an Educational Game	11:
Serious Game and Students' Learning Motivation: Effect of Context Using Prog&Play	12
Exploring the Effects of Prior Video-Game Experience on Learner's Motivation during Interactions with HeapMotiv	129
A Design Pattern Library for Mutual Understanding and Cooperation in Serious Game Design	13

Games: Empirical Studies

Predicting Student Self-regulation Strategies in Game-Based Learning Environments	141
Toward Automatic Verification of Multiagent Systems for Training Simulations	151
Using State Transition Networks to Analyze Multi-party Conversations in a Serious Game	162
How to Evaluate Competencies in Game-Based Learning Systems Automatically?	168
Content Representation: Empirical Studies	
Sense Making Alone Doesn't Do It: Fluency Matters Too! ITS Support for Robust Learning with Multiple Representations	174
Problem Order Implications for Learning Transfer	185
Knowledge Component Suggestion for Untagged Content in an Intelligent Tutoring System	195
Feedback: Empirical Studies	
Automating Next-Step Hints Generation Using ASTUS	201

The Effectiveness of Pedagogical Agents' Prompting and Feedback in Facilitating Co-adapted Learning with MetaTutor	212
Noticing Relevant Feedback Improves Learning in an Intelligent Tutoring System for Peer Tutoring	222
ITS in Special Domains	
Multi-paradigm Generation of Tutoring Feedback in Robotic Arm Manipulation Training	233
User-Centered Design of a Teachable Robot	243
An Intelligent Tutoring and Interactive Simulation Environment for Physics Learning	250
Guru: A Computer Tutor That Models Expert Human Tutors	256
Developing an Embodied Pedagogical Agent with and for Young People with Autism Spectrum Disorder	262
Non Conventional Approaches	
WEBsistments: Enabling an Intelligent Tutoring System to Excel at Explaining Rather Than Coaching	268
Automated Approaches for Detecting Integration in Student Essays Simon Hughes, Peter Hastings, Joseph Magliano, Susan Goldman, and Kimberly Lawless	274

	Table of Contents	XXV
On the WEIRD Nature of ITS/AIED Conferences: Longitudinal Study Analyzing Potential Cultural Bia Emmanuel G. Blanchard		280
Content Representation: Conceptual		
Goal-Oriented Conceptualization of Procedural Know Martin Možina, Matej Guid, Aleksander Sadiko Vida Groznik, and Ivan Bratko	_	286
Context-Dependent Help for Novices Acquiring Con- Knowledge in DynaLearn		292
Towards an Ontology-Based System to Improve Us Collaborative Learning Environments	tencourt,	298
Program Representation for Automatic Hint General Data-Driven Novice Programming Tutor		304
Assessment: Constraints		
Exploring Quality of Constraints for Assessment in Environments		310
Can Soft Computing Techniques Enhance the Error I for Intelligent Tutors?	Diagnosis Accuracy	320
Dialogue: Conceptual		
Identification and Classification of the Most Importa Students' Collaborative Discourses		330
When Less Is More: Focused Pruning of Knowledge Recognition of Student Conversation		340
Mark Floryan, Toby Dragon, and Beverly Park V	Voolf	

Coordinating Multi-dimensional Support in Collaborative Conversational Agents	346
Textual Complexity and Discourse Structure in Computer-Supported Collaborative Learning	352
Dialogue: Questions	
Using Information Extraction to Generate Trigger Questions for Academic Writing Support	358
Learning to Tutor Like a Tutor: Ranking Questions in Context Lee Becker, Martha Palmer, Sarel van Vuuren, and Wayne Ward	368
Learner Modeling	
Analysis of a Simple Model of Problem Solving Times	379
Modelling and Optimizing the Process of Learning Mathematics	389
The Student Skill Model	399
Clustered Knowledge Tracing	405
Preferred Features of Open Learner Models for University Students Susan Bull	411
Do Your Eyes Give It Away? Using Eye Tracking Data to Understand Students' Attitudes towards Open Student Model Representations Moffat Mathews, Antonija Mitrovic, Bin Lin, Jay Holland, and Neville Churcher	422
Fuzzy Logic Representation for Student Modelling: Case Study on	400
Geometry	428

Learning Detection

Content Learning Analysis Using the Moment-by-Moment Learning Detector	434
Towards Automatically Detecting Whether Student Learning Is Shallow	444
Jaclyn Ocumpaugh	
Item to Skills Mapping: Deriving a Conjunctive Q-matrix from Data Michel C. Desmarais, Behzad Beheshti, and Rhouma Naceur	454
Interaction Strategies: Games	
The Role of Sub-problems: Supporting Problem Solving in Narrative-Centered Learning Environments	464
Exploring Inquiry-Based Problem-Solving Strategies in Game-Based Learning Environments	470
Real-Time Narrative-Centered Tutorial Planning for Story-Based Learning	476
Interaction Strategies: Empirical Studies	
An Interactive Teacher's Dashboard for Monitoring Groups in a Multi-tabletop Learning Environment	482
Efficient Cross-Domain Learning of Complex Skills	493
Exploring Two Strategies for Teaching Procedures	499
Relating Student Performance to Action Outcomes and Context in a Choice-Rich Learning Environment	505
James R. Segedy, John S. Kinnebrew, and Gautam Biswas	

Using the MetaHistoReasoning Tool Training Module to Facilitate the Acquisition of Domain-Specific Metacognitive Strategies	511
An Indicator-Based Approach to Promote the Effectiveness of Teachers'	
Interventions	517
Limiting the Number of Revisions while Providing Error-Flagging Support during Tests	524
Dialogue: Empirical Studies	
Towards Academically Productive Talk Supported by Conversational	
Agents	531
Automatic Evaluation of Learner Self-Explanations and Erroneous	
Responses for Dialogue-Based ITSs	541
Group Composition and Intelligent Dialogue Tutors for Impacting	
Students' Academic Self-efficacy	551
How Do They Do It? Investigating Dialogue Moves within Dialogue	
Modes in Expert Human Tutoring	557
Building a Conversational SimStudent	563
Predicting Learner's Project Performance with Dialogue Features in Online Q&A Discussions	570
Young Researchers Track	
Interventions to Regulate Confusion during Learning	576
Using Examples in Intelligent Tutoring Systems	579

Datastreams for Student Affect Assessment in Intelligent Tutoring Keith W. Brawner, Robert Sottilare, and Avelino Gonzalez	582
Detection of Cognitive Strategies in Reading Comprehension Tasks $Terry\ Peckham$	585
The Effects of Adaptive Sequencing Algorithms on Player Engagement within an Online Game	588
A Canonicalizing Model for Building Programming Tutors	591
Developmentally Appropriate Intelligent Spatial Tutoring for Mobile Devices	594
Leveraging Game Design to Promote Effective User Behavior of Intelligent Tutoring Systems	597
Design of a Knowledge Base to Teach Programming	600
Towards an ITS for Improving Social Problem Solving Skills of ADHD Children	603
A Scenario Based Analysis of E-Collaboration Environments	606
Supporting Students in the Analysis of Case Studies for Ill-Defined Domains	609
Using Individualized Feedback and Guided Instruction via a Virtual Human Agent in an Introductory Computer Programming Course Lorrie Lehmann, Dale-Marie Wilson, and Tiffany Barnes	612
Data-Driven Method for Assessing Skill-Opportunity Recognition in Open Procedural Problem Solving Environments	615
Posters	
How Do Learners Regulate Their Emotions?	618

A Model-Building Learning Environment with Explanatory Feedback to Erroneous Models	ϵ
Tomoya Horiguchi, Tsukasa Hirashima, and Kenneth D. Forbus	
An Automatic Comparison between Knowledge Diagnostic Techniques	6
The Interaction Behavior of Agents' Emotional Support and Competency on Learner Outcomes and Perceptions	6
Accuracy of Tracking Student's Natural Language in Operation ARIES!, A Serious Game for Scientific Methods	6
Designing the Knowledge Base for a PHP Tutor	6
Domain Specific Knowledge Representation for an Intelligent Tutoring System to Teach Algebraic Reasoning	6
Exploring the Potential of Tabletops for Collaborative Learning	6
Modeling the Affective States of Students Using SQL-Tutor	6
A Cross-Cultural Comparison of Effective Help-Seeking Behavior among Students Using an ITS for Math	ϵ
Emotions during Writing on Topics That Align or Misalign with Personal Beliefs	6
A Multiagent-Based ITS Using Multiple Viewpoints for Propositional Logic	6

Simulation-Based Training of Ill-Defined Social Domains: The Complex Environment Assessment and Tutoring System (CEATS)	642
Empirical Investigation on Self Fading as Adaptive Behavior of Hint Seeking	645
Scripting Discussions for Elaborative, Critical Interactions Oliver Scheuer, Bruce M. McLaren, Armin Weinberger, and Sabine Niebuhr	647
Design Requirements of a Virtual Learning Environment for Resource Sharing	649
The Effectiveness of a Pedagogical Agent's Immediate Feedback on Learners' Metacognitive Judgments during Learning with MetaTutor Reza Feyzi-Behnagh and Roger Azevedo	651
Supporting Students in the Analysis of Case Studies for Professional Ethics Education	653
Evaluating the Automatic Extraction of Learning Objects from Electronic Textbooks Using ErauzOnt	655
A Cognition-Based Game Platform and Its Authoring Environment for Learning Chinese Characters	657
Effects of Text and Visual Element Integration Schemes on Online Reading Behaviors of Typical and Struggling Readers	660
Fadable Scaffolding with Cognitive Tool	662
Mediating Intelligence through Observation, Dependency and Agency in Making Construals of Malaria	664

Supporting Social Deliberative Skills in Online Classroom Dialogues: Preliminary Results Using Automated Text Analysis	666
Using Time Pressure to Promote Mathematical Fluency	669
Interoperability for ITS: An Ontology of Learning Style Models Judi McCuaig and Robert Gauthier	671
Skill Diaries: Can Periodic Self-assessment Improve Students' Learning with an Intelligent Tutoring System?	673
An Optimal Assessment of Natural Language Student Input Using Word-to-Word Similarity Metrics	675
Facilitating Co-adaptation of Technology and Education through the Creation of an Open-Source Repository of Interoperable Code	677
A Low-Cost Scalable Solution for Monitoring Affective State of Students in E-learning Environment Using Mouse and Keystroke Data	679
Impact of an Adaptive Tutorial on Student Learning Fethi A. Inan, Fatih Ari, Raymond Flores, Amani Zaier, and Ismahan Arslan-Ari	681
Technology Enhanced Learning Program That Makes Thinking the Outside to Train Meta-cognitive Skill through Knowledge Co-creation Discussion	683
Open Student Models to Enhance Blended-Learning	685
ZooQuest: A Mobile Game-Based Learning Application for Fifth Graders	687
Drawing-Based Modeling for Early Science Education	689

An OWL Ontology for IEEE-LOM and OBAA Metadata	691
Classifying Topics of Video Lecture Contents Using Speech Recognition Technology	694
An Agent-Based Infrastructure for the Support of Learning Objects Life-Cycle	696
Cluster Based Feedback Provision Strategies in Intelligent Tutoring Systems	699
A Web Comic Strip Creator for Educational Comics with Assessable Learning Objectives	701
A Layered Architecture for Online Lab-Works: Experimentation in the Computer Science Education	703
A Serious Game for Teaching Conflict Resolution to Children Joana Campos, Henrique Campos, Carlos Martinho, and Ana Paiva	705
Towards Social Mobile Blended Learning	707
Learning Looping: From Natural Language to Worked Examples Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver	710
A Basic Model of Metacognition: A Repository to Trigger Reflection Alejandro Peña Ayala, Rafael Dominguez de Leon, and Riichiro Mizoguchi	712
Analyzing Affective Constructs: Emotions 'n Attitudes	714
Interactive Virtual Representations, Fractions, and Formative Feedback	716

XXXIV Table of Contents

An Intelligent System to Support Accurate Transcription of University	
Lectures	718
Miltiades Papadopoulos and Elaine Pearson	
Multi-context Recommendation in Technology Enhanced Learning Majda Maâtallah and Hassina Seridi-Bouchelaghem	720
Author Index	723