Skip to main content

Parallel Simulation of Urban Dynamics on the GPU

  • Conference paper
Computational Science and Its Applications – ICCSA 2012 (ICCSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7334))

Included in the following conference series:

  • 2721 Accesses

Abstract

In recent years, geosimulation models are becoming increasingly sophisticated and applied to real-world problems covering large geographical areas. As a result, they often require extended computing times. However, in spite of the improved availability of parallel computing facilities, the applications in the field of urban and regional dynamics modelling are almost always based on sequential algorithms. This paper makes a contribution towards a wider use of some high performance computing techniques, namely those based on General-Purpose computing on Graphics Processing Units (GPGPU), in the geosimulation applications. In particular, the relevant details of a parallel version of a typical Cellular Automata approach for simulating land-use dynamics are presented. Also, some computational results obtained on two typical GPU devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White, R., Engelen, G., Uljee, I.: The use of constrained cellular automata for high-resolution modelling of urban land use dynamics. Environment and Planning B 24, 323–343 (1997)

    Article  Google Scholar 

  2. Clarke, K., Hoppen, S., Gaydos, L.: A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Environment and Planning B 24, 247–261 (1997)

    Article  Google Scholar 

  3. Clarke, K.C., Gaydos, L.J.: Loose-coupling a cellular automaton model and GIS: long-term urban growth predictions for San Francisco and Baltimore. International Journal of Geographic Information Science 12(7), 699–714 (1998)

    Article  Google Scholar 

  4. White, R., Engelen, G.: High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems 28(24), 383–400 (2000)

    Article  Google Scholar 

  5. Engelen, G., White, R., De Nijs, T.: Environment Explorer: Spatial Support System for the Integrated Assessment of Socio-Economic and Environmental Policies in the Netherlands. Integrated Assessment 4, 97–105 (2003)

    Article  Google Scholar 

  6. Lavalle, C., Baranzelli, C., e Silva, F.B., Mubareka, S., Gomes, C.R., Koomen, E., Hilferink, M.: A High Resolution Land Use/Cover Modelling Framework for Europe: Introducing the EU-ClueScanner100 Model. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 60–75. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Armstrong, M.P.: Geography and computational science. Annals of the Association of American Geographers 90(1), 146–168 (2000)

    Article  MathSciNet  Google Scholar 

  8. Guan, Q., Clarke, K.C.: A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. International Journal of Geographical Information Science 24(5), 695–722 (2010)

    Article  Google Scholar 

  9. Santé, I., García, A.M., Miranda, D., Crecente, R.: Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning 96(2), 108–122 (2010)

    Article  Google Scholar 

  10. Blecic, I., Cecchini, A., Trunfio, G.A.: A Comparison of Evolutionary Algorithms for Automatic Calibration of Constrained Cellular Automata. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6016, pp. 166–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundamenta Informaticae 8, 247–268 (2008)

    Google Scholar 

  12. Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G.A.: An Evolutionary Approach for Modelling Lava Flows Through Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 725–734. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Goldstein, N.C.: Brains vs. brawn comparative strategies for the calibration of a cellular automata based urban growth model. In: Proceedings of the 7th International Conference on GeoComputation (2003)

    Google Scholar 

  14. Clarke, K.C.: Geocomputation’s future at the extremes: high performance computing and nanoclients. Parallel Computing 29(10), 1281–1295 (2003)

    Article  Google Scholar 

  15. Project Gigalopolis, NCGIA (2003), http://www.ncgia.ucsb.edu/projects/gig/

  16. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.: MPI: the complete reference, vol. 2. The MIT Press, Cambridge (1998)

    Google Scholar 

  17. Preis, T.: GPU-computing in econophysics and statistical physics. European Physical Journal-special Topics 194, 7–119 (2011)

    Google Scholar 

  18. Roberts, M., Packer, J., Sousa, M.C., Mitchell, J.R.: A work-efficient GPU algorithm for level set segmentation. In: Proceedings of the Conference on High Performance Graphics, HPG 2010, pp. 123–132. Eurographics Association, Airela-Ville (2010)

    Google Scholar 

  19. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 79–99. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D., Rongo, R., Perna, G., Di Gregorio, S.: GPGPU Programming and Cellular Automata: Implementation of the SCIARA Lava Flow Simulation Code. In: Proceedings of the 23rd European Modeling and Simulation Symposium (EMSS), pp. 696–702 (2011)

    Google Scholar 

  21. Bilotta, G., Rustico, E., Hérault, A., Vicari, A., Russo, G., Del Negro, C., Gallo, G.: Porting and optimizing MAGFLOW on CUDA. Annals of Geophysics 54(5) (2011)

    Google Scholar 

  22. Pallipuram, V.K., Bhuiyan, M., Smith, M.C.: A comparative study of GPU programming models and architectures using neural networks. The Journal of Supercomputing, 1–46 (2011) (in press)

    Google Scholar 

  23. Krüger, F., Maitre, O., Jiménez, S., Baumes, L., Collet, P.: Speedups between ×70 and ×120 for a Generic Local Search (Memetic) Algorithm on a Single GPGPU Chip. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 501–511. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. NVIDIA CUDA C Programming Guide, version 3.2 (2010)

    Google Scholar 

  25. NVIDIA CUDA C Best Practices Guide, DG-05603-001_v4.1 (2012)

    Google Scholar 

  26. Reyes, R., de Sande, F.: Optimization strategies in different CUDA architectures using llCoMP. Microprocessors and Microsystems 36(2), 78–87 (2012)

    Article  Google Scholar 

  27. EEA, CORINE Land Cover – Technical Guide, Office for Official Publications of European Communities, Luxembourg (1993)

    Google Scholar 

  28. Horn, D.: Stream reduction operations for GPGPU applications. In: Pharr, M. (ed.) GPU Gems 2. Addison Wesley (2005)

    Google Scholar 

  29. Blecic, I., Cecchini, A., Trunfio, G.A.: A General-Purpose Geosimulation Infrastructure for Spatial Decision Support. Transactions on Computational Science 6, 200–218 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blecic, I., Cecchini, A., Trunfio, G.A. (2012). Parallel Simulation of Urban Dynamics on the GPU. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31075-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31075-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31074-4

  • Online ISBN: 978-3-642-31075-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics