Skip to main content

The Fault Tolerant Capacitated k-Center Problem

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7355))

  • 735 Accesses

Abstract

The capacitated K-center (CKC) problem calls for locating K service centers in the vertices of a given weighted graph, and assigning each vertex as a client to one of the centers, where each service center has a limited service capacity and thus may be assigned at most L clients, so as to minimize the maximum distance from a vertex to its assigned service center. This paper studies the fault tolerant version of this problem, where one or more service centers might fail simultaneously. We consider two variants of the problem. The first is the α-fault-tolerant capacitated K-Center ( \(\mbox{\tt $\alpha$-FT-CKC}\) ) problem. In this version, after the failure of some centers, all nodes are allowed to be reassigned to alternate centers. The more conservative version of this problem, hereafter referred to as the α-fault-tolerant conservative capacitated K-center ( \(\mbox{\tt $\alpha$-FT-CCKC}\) ) problem, is similar to the \(\mbox{\tt $\alpha$-FT-CKC}\) problem, except that after the failure of some centers, only the nodes that were assigned to those centers before the failure are allowed to be reassigned to other centers. We present polynomial time algorithms that yields 9-approximation for the \(\mbox{\tt $\alpha$-FT-CKC}\) problem and 17-approximation for the \(\mbox{\tt $\alpha$-FT-CCKC}\) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms 15, 385–415 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized Submodular Cover Problems and Applications. Theoretical Computer Science 250, 179–200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dyer, M., Frieze, A.M.: A simple heuristic for the p-center problem. Oper. Res. Lett. 3, 285–288 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Edmondsa, J., Fulkersona, D.R.: Bottleneck extrema. J. Combinatorial Theory 8, 299–306 (1970)

    Article  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1978)

    Google Scholar 

  6. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hochbaum, D.S., Shmoys, D.B.: Powers of graphs: A powerful approximation algorithm technique for bottleneck problems. In: Proc. 16th ACM Symp. on Theory of Computing, pp. 324–333 (1984)

    Google Scholar 

  8. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10, 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  10. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Appl. Math. 1, 209–216 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khuller, S., Pless, R., Sussmann, Y.: Fault tolerant k-center problems. Theoretical Computer Science 242, 237–245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khuller, S., Sussmann, Y.: The Capacitated K-Center Problem. SIAM J. Discrete Math. 13, 403–418 (2000)

    Article  MathSciNet  Google Scholar 

  13. Plesnik, J.: A heuristic for the p-center problem in graphs. Discrete Appl. Math. 17, 263–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chechik, S., Peleg, D. (2012). The Fault Tolerant Capacitated k-Center Problem. In: Even, G., Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2012. Lecture Notes in Computer Science, vol 7355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31104-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31104-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31103-1

  • Online ISBN: 978-3-642-31104-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics