
Processor Allocation for Optimistic Parallelization of
Irregular Programs∗

Francesco Versaci†

TU Wien & University of Padova
Keshav Pingali‡

University of Texas at Austin

Abstract

Optimistic parallelization is a promising approach for the parallelization of irregular
algorithms: potentially interfering tasks are launched dynamically, and the runtime sys-
tem detects conflicts between concurrent activities, aborting and rolling back conflicting
tasks. However, parallelism in irregular algorithms is very complex. In a regular algorithm
like dense matrix multiplication, the amount of parallelism can usually be expressed as a
function of the problem size, so it is reasonably straightforward to determine how many
processors should be allocated to execute a regular algorithm of a certain size (this is
called the processor allocation problem). In contrast, parallelism in irregular algorithms
can be a function of input parameters, and the amount of parallelism can vary dramati-
cally during the execution of the irregular algorithm. Therefore, the processor allocation
problem for irregular algorithms is very difficult.

In this paper, we describe the first systematic strategy for addressing this problem.
Our approach is based on a construct called the conflict graph, which (i) provides insight
into the amount of parallelism that can be extracted from an irregular algorithm, and
(ii) can be used to address the processor allocation problem for irregular algorithms. We
show that this problem is related to a generalization of the unfriendly seating problem and,
by extending Turán’s theorem, we obtain a worst-case class of problems for optimistic
parallelization, which we use to derive a lower bound on the exploitable parallelism. Fi-
nally, using some theoretically derived properties and some experimental facts, we design
a quick and stable control strategy for solving the processor allocation problem heuristi-
cally.

Keywords: Irregular algorithms, Optimistic parallelization, Automatic parallelization, Amor-
phous data-parallelism, Processor allocation, Unfriendly seating, Turán’s theorem.

∗The original publication is available at www.springerlink.com [24]
†Contact author. Email: versaci@par.tuwien.ac.at. This works was partially supported by PAT-INFN Project

AuroraScience, by MIUR-PRIN Project AlgoDEEP, and by the University of Padova Projects STPD08JA32 and
CPDA099949

‡pingali@cs.utexas.edu

1

ar
X

iv
:1

20
1.

37
78

v2
 [

cs
.P

L
]

 2
7

Ju
n

20
12

1 Introduction

The advent of on-chip multiprocessors has made parallel programming a mainstream con-
cern. Unfortunately writing correct and efficient parallel programs is a challenging task for
the average programmer. Hence, in recent years, many projects [14, 10, 3, 20] have tried
to automate parallel programming for some classes of algorithms. Most of them focus on
regular algorithms such as Fourier transforms [9, 19] and dense linear algebra routines [4].
Automation is more difficult when the algorithms are irregular and use pointer-based data
structures such as graphs and sets. One promising approach is based on the concept of amor-
phous data parallelism [17]. Algorithms are formulated as iterative computations on work-sets,
and each iteration is identified as a quantum of work (task) that can potentially be executed
in parallel with other iterations. The Galois project [18] has shown that algorithms formu-
lated in this way can be parallelized automatically using optimistic parallelization): iterations
are executed speculatively in parallel and, when an iteration conflicts with concurrently exe-
cuting iterations, it is rolled-back. Algorithms that have been successfully parallelized in this
manner include Survey propagation [5], Boruvka’s algorithm [6], Delauney triangulation and
refinement [12], and Agglomerative clustering [21].

In a regular algorithm like dense matrix multiplication, the amount of parallelism can
usually be expressed as a function of the problem size, so it is reasonably straightforward
to determine how many processors should be allocated to execute a regular algorithm of a
certain size (this is called the processor allocation problem). In contrast, parallelism in irreg-
ular algorithms can be a function of input parameters, and the amount of parallelism can
vary dramatically during the execution of the irregular algorithm [16]. Therefore, the pro-
cessor allocation problem for irregular algorithms is very difficult. Optimistic parallelization
complicates this problem even more: if there are too many processors and too little parallel
work, not only might some processors be idle but speculative conflicts may actually retard
the progress of even those processors that have useful work to do, increasing both program
execution time and power consumption. This paper1presents the first systematic approach to ad-
dressing the processor allocation problem for irregular algorithms under optimistic parallelization, and
it makes the following contributions.

• We develop a simple graph-theoretic model for optimistic parallelization and use it
to formulate processor allocation as an optimization problem that balances parallelism
exploitation with minimizing speculative conflicts (Section 2).

• We identify a worst-case class of problems for optimistic parallelization; to this purpose,
we develop an extension of Turán’s theorem [2] (Section 3).

• Using these ideas, we develop an adaptive controller that dynamically solves the proces-
sor allocation problem for amorphous data-parallel programs, providing rapid response
to changes in the amount of amorphous data-parallelism (Section 4).

2 Modeling Optimistic Parallelization

A typical example of an algorithm that exhibits amorphous data-parallelism is Dalauney
mesh refinement, summarized as follows. A triangulation of some planar region is given,
containing some “bad” triangles (according to some quality criterion). To remove them, each
bad triangle is selected (in any arbitrary order), and this triangle, together with triangles
that lie in its cavity, are replaced with new triangles. The retriangulation can produce new
bad triangles, but this process can be proved to halt after a finite number of steps. Two bad
triangles can be processed in parallel, given that their cavities do not overlap.

1A brief announcement of this work has been presented at SPAA’11 [23]

2

(i) (ii) (iii)

Figure 1: Optimistic parallelization. (i) Nodes represent possible computations, edges conflicts
between them. (ii) m nodes are chosen at random and run concurrently. (iii) At runtime the
conflicts are detected, some nodes abort and their execution is rolled back, leaving a maximal
independent set in the subgraph induced by the initial nodes choice.

There are also algorithms, which exhibit amorphous data-parallelism, for which the order
of execution of the parallel tasks cannot be arbitrary, but must satisfy some constraints (e.g.,
in discrete event simulations the events must commit chronologically). We will not treat this
class of problems in this work, but we will focus only on unordered algorithms [16]. A different
context in which there is no roll-back and tasks do not conflict, but obey some precedence
relations, is treated in [1].

Optimistic parallelization deals with amorphous data-parallelism by maintaining a work-
set of the tasks to be executed. At each temporal step some tasks are selected and specula-
tively launched in parallel. If, at runtime, two processes modify the same data a conflict is
detected and one of the two has to abort and roll-back its execution. Neglecting the details of
the various amorphous data-parallel algorithms, we can model their common behavior at a
higher level with a simple graph-theoretic model: we can think a scheduler as working on a
dynamic graph Gt = (Vt, Et), where the nodes represent computations we want to do, but we
have no initial knowledge of the edges, which represent conflicts between computations (see
Fig. 1). At time step t the system picks uniformly at random mt nodes (the active nodes) and
tries to process them concurrently. When it processes a node it figures out if it has some con-
nections with other executed nodes and, if a neighbor node happens to have been processed
before it, aborts, otherwise the node is considered processed, is removed from the graph and
some operations may be performed in the neighborhood, such as adding new nodes with
edges or altering the neighbors. The time taken to process conflicting and non-conflicting
nodes is assumed to be the same, as it happens, e.g., for Dalauney mesh refinement.

2.1 Control Optimization Goal

When we run an optimistic parallelization we have two contrasting goals: we both want
to maximize the work done, achieving high parallelism, but at the same time we want to
minimize the conflicts, hence obtaining a good use of the processors time. (Furthermore,
for some algorithms the roll-back work can be quite resource-consuming.) These two goals
are not compatible, in fact if we naïvely try to minimize the total execution time the system
is forced to use always all the available processors, whereas if we try to minimize the time
wasted from aborted processes the system uses only one processor. Therefore in the following
we choose a trade-off goal and cast it in our graph-theoretic model.

Let G = (V, E) be a computations/conflicts (CC) graph with n = |V| nodes. When
a scheduler chooses, uniformly at random, m nodes to be run, the ordered set πm(·) by
which they commit can be modeled as a random permutation: if i < j then πm(i) commits
before πm(j) (if there is a conflict between πm(i) and πm(j) then πm(i) commits and πm(j)

3

aborts, if πm(i) aborted due to conflicts with previous processes πm(j) can commit, if not
conflicting with other committed processes). Let kt(πm) be the number of aborted processes
due to conflicts and rt(πm) ∈ [0, 1) the ratio of conflicting processors observed at time t (i.e.
rt(πm) , kt(πm)/m). We define the conflict ratio r̄t(m) to be the expected r that we obtain
when the system is run with m processors:

r̄t(m) , Eπm [rt(πm)] , (1)

where the expectation is computed uniformly over the possible prefixes of length m of the n
nodes permutations. The control problem we want to solve is the following: given r(τ) and
mτ for τ < t, choose mt = µt such that r̄t(µt) ' ρ, where ρ is a suitable parameter.

Remark 1. If we want to dynamically control the number of processors, ρ must be chosen
different from zero, otherwise the system converges to use only one processor, thus not being
able to identify available parallelism. A value of ρ ∈ [20%, 30%] is often reasonable, together
with the constraint mt ≥ 2.

3 Exploiting Parallelism

In this section we study how much parallelism can be extracted from a given CC graph and
how its sparsity can affect the conflict ratio. To this purpose we obtain a worst case class of
graphs and use it to analytically derive a lower bound for the exploitable parallelism (i.e., an
upper bound for the conflict ratio). We make extensive use of finite differences (i.e., discrete
derivatives), which are defined recursively as follows. Let f : Z → R be a real function
defined on the integers, then the i-th (forward) finite difference of f is

∆i
f (k) = ∆i−1

f (k + 1)− ∆i−1
f (k) , with ∆0

f (k) = f (k) . (2)

(In the following we will omit ∆’s superscript when equal to one, i.e., ∆ , ∆1.)
First, we obtain two basic properties of r̄, which are given by the following propositions.

Proposition 1. The conflict ratio function r̄(m) is non-decreasing in m.

To prove Prop. 1 we first need a lemma:

Lemma 1. Let k̄(m) , Eπm [k(πm)]. Then k̄ is a non-decreasing convex function, i.e. ∆k̄(m) ≥ 0
and ∆2

k̄(m) ≥ 0.

Proof. Let k̃(πm, i) be the expected number of conflicting nodes running r = m + i nodes
concurrently, the first m of which are πm and the last i are chosen uniformly at random
among the remaining ones. By definition, we have

Eπm

[
k̃(πm, i)

]
= k̄(m + i) . (3)

In particular,
k̃(πm, 1) = k(πm) + Pr [(m + 1)-th conflicts] , (4)

which brings
k̄(m + 1) = Eπm

[
k̃(πm, 1)

]
= k̄(m) + η , (5)

with η = k̄(m + 1)− k̄(m) = ∆k̄(m) ≥ 0, hence proving the monotonicity of k̄. Consider now

k̃(πm, 2) = k(πm) + Pr [(m + 1)-th conflicts] + Pr [(m + 2)-th conflicts] . (6)

If the (m + 1)-th node does not add any edge, then we have

Pr [(m + 1)-th conflicts] = Pr [(m + 2)-th conflicts] , (7)

but since it may add some edges the probability of conflicting the second time is in general
larger and thus ∆2

k̄(m) ≥ 0.

4

Prop. 1. Since r̄(m) = k̄(m)/m, its finite difference can be written as

∆r̄(m) =
m∆k̄(m)− k̄(m)

m(m + 1)
. (8)

Because of Lemma 1 and being k̄(1) = 0 we have

k̄(m + 1) ≤ m∆k̄(m) , (9)

which finally brings

∆r̄(m) =
m∆k̄(m)− k̄(m)

m(m + 1)
≥ k̄(m + 1)− k̄(m)

m(m + 1)
=

∆k̄(m)

m(m + 1)
≥ 0 . (10)

Proposition 2. Let G be a CC graph, with n nodes and average degree d, then the initial derivative of
r̄ depends only on n and d as

∆r̄(1) =
d

2(n− 1)
. (11)

Proof. Since

∆r̄(1) =
∆k̄(1)− k̄(1)

2
=

k̄(2)
2

, (12)

we just need to obtain k̄(2). Let k̃ be defined as in the proof on Lemma 1 and π1 = v a node
chosen uniformly at random. Then

k̄(2) = Ev
[
k̃(v, 1)

]
= Ev

[
dv

n− 1

]
=

Ev [dv]

n− 1
=

d
n− 1

. (13)

A measure of the available parallelism for a given CC graph has been identified in [15]
considering, at each temporal step, a maximal independent set of the CC graph. The expected
size of a maximal independent set gives a reasonable and computable estimate of the available
parallelism. However, this is not enough to predict the actual amount of parallelism that a
scheduler can exploit while keeping a low conflict ratio, as shown in the following example.

Example 1. Let G = Kn2 ∪ Dn where Kn2 is the complete graph of size n2 and Dn a disconnected
graph of size n (i.e. G is made up of a clique of size n2 and n disconnected nodes). For this graph every
maximal independent set is maximum too and has size n + 1, but if we choose n + 1 nodes uniformly
at random and then compute the conflicts we obtain that, on average, there are only 2 independent
nodes.

A more realistic estimate of the performance of a scheduler can be obtained by analyzing
the CC graph sparsity. The average degree of the CC graph is linked to the expected size of
a maximal independent set of the graph by the following well known theorem (in the variant
shown in [2] or [22]):

Theorem 1. (Turán, strong formulation). Let G = (V, E) be a graph, n = |V| and let d be the
average degree of G. Then the expected size of a maximal independent set, obtained choosing greedily
the nodes from a random permutation, is at least s = n/(d + 1).

Remark 2. The previous bound is existentially tight: let Kn
d be the graph made up of s =

n/(d + 1) cliques of size d + 1, then the average degree is d and the size of every maximal
(and maximum) independent set is exactly s. Furthermore, every other graph with the same
number of nodes and edges has a bigger average maximal independent set.

5

The study of the expected size of a maximal independent set in a given graph is also
known as the unfriendly seating problem [7, 8] and is particularly relevant in statistical physics,
where it is usually studied on mesh-like graphs [11]. The properties of the graph Kn

d has
suggested us the formulation of an extension of the Turán’s theorem. We prove that the
graphs Kn

d provide a worst case (for a given degree d) for the generalization of this problem
obtained by focusing on maximal independent set of induced subgraphs. This allows, when
given a target conflict ratio ρ, the computation of a lower bound for the parallelism a scheduler
can exploit.

Theorem 2. Let G be a graph with same nodes number and degree of Kn
d and let EMm(G) be the

expected size of a maximal independent set of the subgraph induced by a uniformly random choice of
m nodes in G, then

EMm(G) ≥ EMm(Kn
d) . (14)

To prove it we first need the following lemma.

Lemma 2. The function ηj(x) , ∏
j
i=1(n− i− x) is convex for x ∈ [0, n− j].

Proof. We prove by induction on j that, for x ∈ [0, n− j],

ηj(x) ≥ 0 , η′j(x) ≤ 0 , η′′j (x) ≥ 0 . (15)

Base case Let η0(x) = 1. The properties above are easily verified.

Induction Since ηj(x) = ηj−1(x)(n− j− x), we obtain

η′j(x) = −ηj−1(x) + (n− j− x)η′j−1(x) , (16)

which is non-positive by inductive hypotheses. Similarly,

η′′j (x) = −2η′j−1(x) + (n− j− x)η′′j−1(x) (17)

is non-negative.

Thm. 2. Consider a random permutation π of the nodes of a generic graph G that has the same
number of nodes and edges of Kn

d . We assume the prefix of length m of π (i.e. π(1), . . . , π(m))
forms the active nodes and focus on the following independent set ISm in the subgraph in-
duced: a node v is in ISm(G, π) if and only if it is in the first m positions of π and it has no
neighbors preceding it. Let bm(G) be the expected size of ISm(G, π) averaged over all possible
π’s (chosen uniformly):

bm(G) , Eπ [# ISm(G, π)] . (18)

Since for construction bm(G) ≤ EMm(G) whereas bm(Kn
d) = EMm(Kn

d), we just need to prove
that bm(Kn

d) ≤ bm(G). Given a generic node v of degree dv and a random permutation π, its
probability to be in ISm(G, π) is

Pr [v ∈ ISm(G, π)] =
1
n

m

∑
j=1

j−1

∏
i=1

n− i− dv

n− i
. (19)

By the linearity of the expectation we can write b as

bm(G) =
1
n

vn

∑
v=v1

m

∑
j=1

j−1

∏
i=1

n− i− dv

n− i
= Ev

[
m

∑
j=1

j−1

∏
i=1

n− i− dv

n− i

]
, (20)

bm(Kn
d) =

m

∑
j=1

j−1

∏
i=1

n− i− d
n− i

=
m

∑
j=1

j−1

∏
i=1

n− i−Ev[dv]

n− i
. (21)

6

To prove that EMm(G) ≥ EMm(Kn
d) is thus enough showing that

∀j Ev

[
j

∏
i=1

(n− i− dv)

]
≥

j

∏
i=1

(n− i−Ev[dv]) , (22)

which can be done applying Jensen’s inequality [13], since in Lemma 2 we have proved the
convexity of ηj(x) , ∏

j
i=1(n− i− x).

Corollary 1. The worst case for a scheduler among the graphs with the same number of nodes and
edges is obtained for the graph Kn

d (for which we can analytically approximate the performance, as
shown in §3.1).

Proof. Since

r̄(m) =
m− EMm(G)

m
= 1− 1

m
EMm(G) , (23)

the thesis follows.

3.1 Analysis of the Worst-Case Performance

Theorem 3. Let d be the average degree of G = (V, E) with n = |V| (for simplicity we assume
n/(d + 1) ∈N). The conflict ratio is bounded from above as

r̄(m) ≤ 1− n
m(d + 1)

(
1−

m

∏
i=1

n− d− i
n + 1− i

)
. (24)

Proof. Let s = n/(d + 1) be the number of connected components in Kn
d . Because of Thm. 2

and Cor. 1 it suffices to show that

EMm(Kn
d) = s

(
1−

m

∏
i=1

n− d− i
n + 1− i

)
. (25)

The probability for a connected component k of Kn
d not to be accessed when m nodes are

chosen is given by the following hypergeometric

Pr[k not hit] =

(
n− d− 1

m

)(
d + 1

0

)
(

n
m

) =
m

∏
i=1

n− d− i
n + 1− i

. (26)

Let Xk be a random variable that is 1 when component k is hit and 0 otherwise. We have
that E[Xk] = 1−∏m

i=1
n−d−i
n+1−i and, by the linearity of the expectation, the average number of

components accessed is

E

[
s

∑
k=1

Xk

]
=

s

∑
k=1

E[Xk] = s

(
1−

m

∏
i=1

n− d− i
n + 1− i

)
. (27)

Corollary 2. When n and m increase the bound is well approximated by

r̄(m) ≤ 1− n
m(d + 1)

[
1−

(
1− m

n

)d+1
]

. (28)

7

Proof. Stirling approximation for the binomial, followed by low order terms deletion in the
resulting formula.

Corollary 3. If we set m = αs = αn
d+1 we obtain

r̄(m) ≤ 1− 1
α

[
1−

(
1− α

d + 1

)d+1
]
≤ 1− 1

α

[
1− e−α

]
. (29)

4 Controlling Processors Allocation

In this section we will design an efficient control heuristic that dynamically chooses the num-
ber of processes to be run by a scheduler, in order to obtain high parallelism while keeping
the conflict ratio low. In the following we suppose that the properties of Gt are varying slowly
compared to the convergence of mt toward µt under the algorithm we will develop (see §4.1),
so we can consider Gt = G and µt = µ and thus our goal is making mt converge to µ.

Since the conflict ratio is a non-decreasing function of the number of launched tasks m
(Prop. 1) we could find m ' µ by bisection simply noticing that

r̄(m′) ≤ ρ ≤ r̄(m′′) ⇒ m′ ≤ µ ≤ m′′ . (30)

The control we propose is slightly more complex and is based on recurrence relations, i.e.,
we compute mt+1 as a function F of the target conflict ratio ρ and of the parameters which
characterize the system at the previous timestep:

mF
t+1 = F (ρ, rt, mt) . (31)

The initial value m0 for a recurrence can be chosen to be 2 but, if we have an estimate of the
CC graph average degree d, we can choose a smarter value: in fact applying Cor. 3 we are
sure that using, e.g., m = n

2(d+1) processors we will have at most a conflict ratio of 21.3%.
Our control heuristic (Algorithm 1) is a hybridization of two simple recurrences. The first

recurrence is quite natural and increases m based on the distance between r and ρ:

Recurrence A: mA
t+1 = (1− rt + ρ)mt . (32)

The second recurrence exploits some experimental facts. In Fig. 2 we have plotted the conflict
ratio functions for three CC graphs with the same size and average degree (note that initial
derivative is the same for all the graphs, in accordance with Prop. 2). We see that conflict
ratios which reach a high value (r̄(n) > 1

2) are initially well approximated by a straight line
(for m such that r̄(m) ≤ ρ = 20÷ 30%), whereas functions that deviates from this behavior do
not raise too much. This suggests us to assume an initial linearity in controlling mt, as done
by the following recurrence:

Recurrence B: mB
t+1 =

ρ

rt
mt . (33)

The two recurrences can be roughly compared as follows (see Fig. 3): Recurrence A has
a slower convergence than Recurrence B, but it is less susceptible to noise (the variance that
makes rt realizations different from r̄t). This is the reason for which we chose to merge
them in an hybrid algorithm: initially, when the difference between r and ρ is big, we use
Recurrence B to exploit its quick convergence and then Recurrence A is adopted, for a finer
tuning of the control.

8

Algorithm 1: Pseudo-code of the proposed hybrid control algorithm
// Tunable parameters

1 m0 = 2; mmax = 1024; mmin = 2;
2 T = 4; rmin = 3%; α0 = 25%; α1 = 6%;
// Variables

3 m← m0; r ← 0; t← 0;
// Main loop

4 while nodes to elaborate 6= 0 do
5 t← t + 1;
6 if m > mmax then m← mmax;
7 else if m < mmin then m← mmin;
8 Launch the scheduler with m nodes;
9 r ← r + new conflict ratio;

10 if (t mod T) = T − 1 then
11 r ← r/T;

12 α←
∣∣∣∣1− r

ρ

∣∣∣∣;
13 if α > α0 then
14 if r < rmin then r ← rmin;

15 m←
⌈ρ

r
m
⌉

;

16 else if α > α1 then
17 m← d(1− r + ρ)me;
18 r ← 0;

0

0.2

0.4

0.6

0.8

1

r̄(
m
)

200 400 600 800 1000 1200 1400 1600 1800 2000
m

1

Upper bound
Random graph
Cliques + discon. nodes
Common tangent

Figure 2: A plot of r̄(m) for some graphs with n = 2000 and d = 16: (i) the worst case upper
bound of Cor. 2 (ii) a random graph (edges chosen uniformly at random until desired degree is
reached; data obtained by computer simulation) (iii) a graph unions of cliques and disconnected
nodes.

9

0

100

200

300

mt

0 20 40 60 80 100
t

d = 4, Rec. A
d = 4, Hybrid

d = 16, Rec. A
d = 16, Hybrid

Figure 3: Comparison between two realizations of the hybrid algorithm and one that only uses
Recurrence A, for two different random graphs (n = 2000 in both cases). The hybrid version has
different parameters for m greater or smaller than 20. ρ was chosen to be 20%. The proposed
algorithm proves to be both quick in convergence and stable.

4.1 Experimental Evaluation

In the practical implementation of the control algorithm we have made the following opti-
mizations:
• Since rt can have a big variance, especially when m is small, we decided to apply the

changes to m every T steps, using the averaged values obtained in these intervals, to
smooth the oscillations.
• To further reduce the oscillations we apply a change only if the observed rt is sufficiently

different from ρ (e.g. more than 6%), thus avoiding small variations in the steady state,
which interfere with locality exploitation because of the data moving from one processor
to another.
• Another problem that must be considered is that for small values of m the variance is

much bigger, so it is better to tune separately this case using different parameters (this
optimization is not shown in the pseudo-code).

To validate our controller we have run the following simulation: a random CC graph of
fixed average degree d is taken and the controller runs on it, starting with m0 = 2. We are
interested in seeing how many temporal steps it takes to converge to mt ' µ. As can be
seen in [15] the parallelism profile of many practical applications can vary quite abruptly,
e.g., Delauney mesh refinement can go from no parallelism to one thousand possible parallel
tasks in just 30 temporal steps. Therefore, an algorithm that wants to efficiently control the
processors allocations for these problems must adapt very quickly to changes in the available
parallelism. Our controller, that uses the very fast Recurrence B in the initial phase, proves
to do a fast enough job: as shown in Fig. 3 in about 15 steps the controller converges close to
the desired µ value.

5 Conclusions and Future Work

Automatic parallelization of irregular algorithms is a rich and complex subject and will offer
many difficult challenges to researchers in the next future. In this paper we have focused
on the processor allocation problem for unordered data-amorphous algorithms; it would
be extremely valuable to obtain similar results for the more general and difficult case of
ordered algorithms (e.g., discrete event simulation), in particular it is very hard to obtain good
estimates of the available parallelism for such algorithms, given the complex dependencies
arising between the concurrent tasks. Another aspect which needs investigation, especially in

10

the ordered context, is whether some statical properties of the behavior of irregular algorithms
can be modeled, extracted and exploited to build better controllers, able to dynamically adapt
to the different execution phases.

As for a real-world implementation, the proposed control heuristic is now being integrated
in the Galois system and it will be evaluated on more realistic workloads.

Acknowledgments

We express our gratitude to Gianfranco Bilardi for the valuable feedback on recurrence-based
controllers and to all the Galois project members for the useful discussions on optimistic
parallelization modeling.

References

[1] Agrawal, K., Leiserson, C.E., He, Y., Hsu, W.J.: Adaptive work-stealing with parallelism
feedback. ACM Trans. Comput. Syst. 26(3), 7:1–7:32 (Sep 2008), http://doi.acm.org/
10.1145/1394441.1394443

[2] Alon, N., Spencer, J.: The probabilistic method. Wiley-Interscience (2000)

[3] An, P., Jula, A., Rus, S., Saunders, S., Smith, T.G., Tanase, G., Thomas, N., Amato, N.M.,
Rauchwerger, L.: Stapl: An adaptive, generic parallel C++ library. In: Dietz, H.G. (ed.)
LCPC. Lecture Notes in Computer Science, vol. 2624, pp. 193–208. Springer (2001)

[4] Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA (1997)

[5] Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: An algorithm for satisfi-
ability. Random Struct. Algorithms 27(2), 201–226 (2005)

[6] Eppstein, D.: Spanning trees and spanners. In: Sack, J., Urrutia, J. (eds.) Handbook of
Computational Geometry, pp. 425–461. Elsevier (2000)

[7] Freedman, D., Shepp, L.: Problem 62-3, an unfriendly seating arrangement. SIAM Re-
view 4(2), p. 150 (1962), http://www.jstor.org/stable/2028372

[8] Friedman, H.D., Rothman, D., MacKenzie, J.K.: Problem 62-3. SIAM Review 6(2), pp.
180–182 (1964), http://www.jstor.org/stable/2028090

[9] Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the
IEEE 93(2), 216–231 (2005), special issue on “Program Generation, Optimization, and
Platform Adaptation”

[10] Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multi-
threaded language. In: PLDI. pp. 212–223 (1998)

[11] Georgiou, K., Kranakis, E., Krizanc, D.: Random maximal independent sets and the
unfriendly theater seating arrangement problem. Discrete Mathematics 309(16), 5120
– 5129 (2009), http://www.sciencedirect.com/science/article/B6V00-4W55T4X-2/2/
72d38a668c737e68edf497512e606e12

[12] Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of delaunay
and voronoi diagrams. Algorithmica 7(4), 381–413 (1992)

11

http://doi.acm.org/10.1145/1394441.1394443
http://doi.acm.org/10.1145/1394441.1394443
http://www.jstor.org/stable/2028372
http://www.jstor.org/stable/2028090
http://www.sciencedirect.com/science/article/B6V00-4W55T4X-2/2/72d38a668c737e68edf497512e606e12
http://www.sciencedirect.com/science/article/B6V00-4W55T4X-2/2/72d38a668c737e68edf497512e606e12

[13] Jensen, J.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
Mathematica 30(1), 175–193 (1906)

[14] Kalé, L.V., Krishnan, S.: Charm++: A portable concurrent object oriented system based
on C++. In: OOPSLA. pp. 91–108 (1993)

[15] Kulkarni, M., Burtscher, M., Cascaval, C., Pingali, K.: Lonestar: A suite of parallel irreg-
ular programs. In: ISPASS. pp. 65–76. IEEE (2009)

[16] Kulkarni, M., Burtscher, M., Inkulu, R., Pingali, K., Cascaval, C.: How much parallelism
is there in irregular applications? In: Reed, D.A., Sarkar, V. (eds.) PPOPP. pp. 3–14. ACM
(2009)

[17] Méndez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Hassaan, M.A., Kulkarni, M.,
Burtscher, M., Pingali, K.: Structure-driven optimizations for amorphous data-parallel
programs. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPOPP. pp. 3–14. ACM
(2010)

[18] Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R., Lee,
T.H., Lenharth, A., Manevich, R., Méndez-Lojo, M., Prountzos, D., Sui, X.: The tao of
parallelism in algorithms. In: Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation. pp. 12–25. PLDI ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/1993498.1993501

[19] Püschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti,
F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R., Rizzolo, N.: Spiral: Code generation
for dsp transforms. Proceedings of the IEEE 93(2), 232–275 (Feb 2005)

[20] Reinders, J.: Intel threading building blocks. O’Reilly & Associates, Inc., Sebastopol, CA,
USA (2007)

[21] Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)

[22] Tao, T.: Additive combinatorics. Cambridge University Press (2006)

[23] Versaci, F., Pingali, K.: Brief announcement: processor allocation for optimistic paral-
lelization of irregular programs. In: Proceedings of the 23rd ACM symposium on Par-
allelism in algorithms and architectures. pp. 261–262. SPAA ’11, ACM, New York, NY,
USA (2011), http://doi.acm.org/10.1145/1989493.1989533

[24] Versaci, F., Pingali, K.: Processor allocation for optimistic parallelization of irregular
programs. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A., Taniar, D.,
Apduhan, B. (eds.) Computational Science and Its Applications – ICCSA 2012, Lecture
Notes in Computer Science, vol. 7333, pp. 1–14. Springer Berlin / Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31125-3_1

12

http://doi.acm.org/10.1145/1993498.1993501
http://doi.acm.org/10.1145/1989493.1989533
http://dx.doi.org/10.1007/978-3-642-31125-3_1

	1 Introduction
	2 Modeling Optimistic Parallelization
	2.1 Control Optimization Goal

	3 Exploiting Parallelism
	3.1 Analysis of the Worst-Case Performance

	4 Controlling Processors Allocation
	4.1 Experimental Evaluation

	5 Conclusions and Future Work

