Abstract
Increasing interest is being dedicated in the last few years to the issues of exact computations and asymptotics of spin networks. The large–entries regimes (semiclassical limits) occur in many areas of physics and chemistry, and in particular in discretization algorithms of applied quantum mechanics. Here we extend recent work on the basic building block of spin networks, namely the Wigner 6j symbol or Racah coefficient, enlightening the insight gained by exploiting its self–dual properties and studying it as a function of two (discrete) variables. This arises from its original definition as an (orthogonal) angular momentum recoupling matrix element. Progress also derives from recognizing its role in the foundation of the modern theory of classical orthogonal polynomials, as extended to include discrete variables. Features of the imaging of various regimes of these orthonormal matrices are made explicit by computational advances –based on traditional and new recurrence relations– which allow an interpretation of the observed behaviors in terms of an underlying Hamiltonian formulation as well. This paper provides a contribution to the understanding of the transition between two extreme modes of the 6j, corresponding to the nearly classical and the fully quantum regimes, by studying the boundary lines (caustics) in the plane of the two matrix labels. This analysis marks the evolution of the turning points of relevance for the semiclassical regimes and puts on stage an unexpected key role of the Regge symmetries of the 6j.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aquilanti, V., Cavalli, S., Grossi, G.: Hund’s cases for rotating diatomic molecules and for atomic collisions: angular momentum coupling schemes and orbital alignment. Z. Phys. D. 36, 215–219 (1996)
Aquilanti, V., Capecchi, G.: Harmonic analysis and discrete polynomials. From semiclassical angular momentum theory to the hyperquantization algorithm. Theor. Chem. Accounts 104, 183–188 (2000)
Aquilanti, V., Cavalli, S., Coletti, C.: Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials. a recursive algorithm. Chem Phys. Letters 344, 587–600 (2001)
Aquilanti, V., Coletti, C.: 3nj-symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Letters 344, 601–611 (2001)
De Fazio, D., Cavalli, S., Aquilanti, V.: Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics. The hyperquantization algorithm. Int. J. Quantum Chem. 93, 91–111 (2003)
Aquilanti, V., Haggard, H., Littlejohn, R., Yu, L.: Semiclassical analysis of Wigner 3j-symbol. J. Phys. A 40, 5637–5674 (2007)
Aquilanti, V., Bitencourt, A.C.P., Ferreira, C.d.S., Marzuoli, A., Ragni, M.: Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity. Physica Scripta 78(058103), 7 pages (2008)
Anderson, R.W., Aquilanti, V., Ferreira, C.d.S.: Exact computation and large angular momentum asymptotics of 3nj symbols: semiclassical disentangling of spin-networks. J. Chem. Phys. 129(161101), 5 pages (2008)
Aquilanti, V., Bitencourt, A.C.P., Ferreira, C.d.S., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Accounts 123, 237–247 (2009)
Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113, 15106–15117 (2009)
Ragni, M., Bitencourt, A.C.P., Ferreira, C.d.S., Aquilanti, V., Anderson, R.W., Littlejohn, R.: Exact computation and asymptotic approximation of 6j symbols. illustration of their semiclassical limits. Int. J. Quantum Chem. 110, 731–742 (2010)
Aquilanti, V., Haggard, H., Hedeman, A., Jeevanjee, N., Littlejohn, R., Yu, L.: Semiclassical mechanics of the Wigner 6j-symbol. J. Phys. A 45(065209) (2012)
Aquilanti, V., Cavalli, S., De Fazio, D.: Angular and hyperangular momentum coupling coefficients as hahn polynomials. J. Phys. Chem. 99, 15694–15698 (1995)
Aquilanti, V., Cavalli, S., De Fazio, D.: Hyperquantization algorithm I. Theory for triatomic systems. J. Phys. Chem. 109, 3792–3805 (1998)
Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A.: The A+BC reaction by the hyperquantization algorithm: the symmetric hyperspherical parametrization for j > 0. J. Phys. Chem. 39, 103–121 (2001)
Yutsis, A., Levinson, I., Vanagas, V.: The Mathematical Apparatus of the Theory of Angular Momentum. Program for Sci. Transl. Ltd., Jerusalem (1962)
Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)
Penrose, R.: Angular momentum: an approach to combinatorial space–time. In: Bastin, T. (ed.) Quantum Theory and Beyond. Cambridge Univ. Press (1971)
Ponzano, G., Regge, T.: Semiclassical limit of racah coefficients. In: Spectroscopic and Group Theoretical Methods in Physics (1968)
Rovelli, C.: Quantum Gravity. Cambridge University Press (2004)
Carfora, M., Marzuoli, A., Rasetti, M.: Quantum Tetrahedra. J. Phys. Chem. A 113, 15376–15383 (2009)
Koekoek, R., Lesky, P., Swarttouw, R.: Hypergeometric orthogonal polynomials and their q-analogues. Springer (2010)
Regge, T.: Symmetry properties of Racah’s coefficients. Nuovo Cimento 11, 116–117 (1959)
Littlejohn, R., Yu, L.: Uniform semiclassical approximation for the Wigner 6j symbol in terms of rotation matrices. J. Phys. Chem. A 113, 14904–14922 (2009)
Aquilanti, V., Haggard, H.M., Hedeman, A., Jeevangee, N., Littlejohn, R., Yu, L.: Semiclassical mechanics of the Wigner 6j-symbol. J. Phys. A 45(065209) (2012)
Schulten, K., Gordon, R.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)
Schulten, K., Gordon, R.: Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta. J. Math. Phys. 16, 1971–1988 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V. (2012). Exact and Asymptotic Computations of Elementary Spin Networks: Classification of the Quantum–Classical Boundaries. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31125-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-31125-3_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31124-6
Online ISBN: 978-3-642-31125-3
eBook Packages: Computer ScienceComputer Science (R0)