Skip to main content

On Minimum Sum of Radii and Diameters Clustering

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

  • 1196 Accesses

Abstract

Given a metric (V,d) and an integer k, we consider the problem of covering the points of V with at most k clusters so as to minimize the sum of radii or the sum of diameters of these clusters. The former problem is called the Minimum Sum Radii (MSR) problem and the latter is the Minimum Sum Diameters (MSD) problem. The current best polynomial time algorithms for these problems have approximation ratios 3.504 and 7.008, respectively [2]. For the MSR problem, we give an exact algorithm when the metric is the shortest-path metric of an unweighted graph and there cannot be any singleton clusters. For the MSD problem on the plane with Euclidean distances, we present a polynomial time approximation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Capoyleas, V., Rote, G., Woeginger, G.: Geometric clusterings. Journal of Algorithms 12(2), 341–356 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. Journal of Computer and System Sciences 68(2), 417–441 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation algorithms for clustering to minimize the sum of diameters. Nordic J. of Computing 7(3), 185–203 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On metric clustering to minimize the sum of radii. Algorithmica (2010)

    Google Scholar 

  5. Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On clustering to minimize the sum of radii. SIAM Journal on Computing 41(1), 47–60 (2012)

    Article  MATH  Google Scholar 

  6. Hansen, P., Jaumard, B.: Minimum sum of diameters clustering. Journal of Classification 4(2), 215–226 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jung, H.W.: Über die kleinste kugel, die eine räumliche figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Behsaz, B., Salavatipour, M.R. (2012). On Minimum Sum of Radii and Diameters Clustering. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics