Skip to main content

Automatic Description of Context-Altering Services through Observational Learning

  • Conference paper
Pervasive Computing (Pervasive 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7319))

Included in the following conference series:

Abstract

Understanding the effect of pervasive services on user context is critical to many context-aware applications. Detailed descriptions of context-altering services are necessary, and manually adapting them to the local environment is a tedious and error-prone process. We present a method for automatically providing service descriptions by observing and learning from the behavior of a service with respect to its environment. By applying machine learning techniques on the observed behavior, our algorithms produce high quality localized service descriptions. In a series of experiments we show that our approach, which can be easily plugged into existing architectures, facilitates context-awareness without the need for manually added service descriptions.

This work is supported by EU FP7 STREP Project SM4ALL (Smart hoMes for ALL), under Grant No. 224332.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. KNX standard (Version 1.1). Konnex Association Brussels (2004)

    Google Scholar 

  2. Bowers, S., Ludäscher, B.: Towards Automatic Generation of Semantic Types in Scientific Workflows. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan, Z., Sheng, Q.Z. (eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 207–216. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Carman, M.J., Knoblock, C.A.: Learning semantic descriptions of web information sources. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 2695–2700. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 15:1–15:58 (2009)

    Google Scholar 

  5. Ciccio, C.D., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K., Querzoni, L., Santucci, G., Tino, G.: The homes of tomorrow: service composition and advanced user interfaces. ICST Transactions on Ambient Systems 11(10-12) (2011)

    Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  7. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 144–151. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  8. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 320–334. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. ISO 29341-1:2008: Part 1: UPnP Device Architecture Version 1.0. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  10. Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation, composition and simulation of services at home. In: Eigth International Conference on Service Oriented Computing, pp. 167–181 (2010)

    Google Scholar 

  11. Khalid, B., Embury, S.M., Paton, N.W., Stevens, R., Goble, C.A.: Automatic annotation of web services based on workflow definitions. ACM Trans. Web 2, 11:1–11:34 (2008)

    Google Scholar 

  12. Lerman, K., Plangprasopchok, A., Knoblock, C.A.: Automatically labeling the inputs and outputs of web services. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1363–1368. AAAI Press (2006)

    Google Scholar 

  13. Li, F., Rasch, K., Truong, H.L., Ayani, R., Dustdar, S.: Proactive service discovery in pervasive environments. In: Proceedings of the 7th International Conference on Pervasive Services, pp. 126–133 (2010)

    Google Scholar 

  14. Li, F., Sehic, S., Dustdar, S.: Copal: An adaptive approach to context provisioning. In: 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 286–293 (2010)

    Google Scholar 

  15. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: METEOR-S web service annotation framework. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 553–562. ACM, New York (2004)

    Chapter  Google Scholar 

  16. Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Context-driven personalized service discovery in pervasive environments. World Wide Web 14(4), 295–319 (2011)

    Article  Google Scholar 

  17. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services Composition Using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S. (2012). Automatic Description of Context-Altering Services through Observational Learning. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds) Pervasive Computing. Pervasive 2012. Lecture Notes in Computer Science, vol 7319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31205-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31205-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31204-5

  • Online ISBN: 978-3-642-31205-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics