
Automatic Description of Context-Altering

Services through Observational Learning�

Katharina Rasch1, Fei Li2, Sanjin Sehic2,
Rassul Ayani1, and Schahram Dustdar2

1 KTH Royal Institute of Technology
School of Information and Communication Technology

Stockholm, Sweden
{krasch,ayani}@kth.se

2 Distributed Systems Group,
Vienna University of Technology, Austria
A-1040 Wien, Argentinierstrasse 8/184-1

lastname@infosys.tuwien.ac.at

Abstract. Understanding the effect of pervasive services on user context
is critical to many context-aware applications. Detailed descriptions of
context-altering services are necessary, and manually adapting them to
the local environment is a tedious and error-prone process. We present a
method for automatically providing service descriptions by observing and
learning from the behavior of a service with respect to its environment.
By applying machine learning techniques on the observed behavior, our
algorithms produce high quality localized service descriptions. In a series
of experiments we show that our approach, which can be easily plugged
into existing architectures, facilitates context-awareness without the need
for manually added service descriptions.

1 Introduction

Context covers all aspects of the current situation of a user, for example user lo-
cation, current time, physical properties (e.g. temperature, humidity) or medical
data (e.g. heart rate and blood pressure). Often the services offered by pervasive
devices are what we call context-altering, i.e. executing them changes the user
context in some way. For instance, an air conditioner service influences the in-
door temperature, and switching on a stereo changes the noise level around the
user. In our prototype smart home we found that of the 30 available services,
over 90% are context altering.

Context-altering services can be described with a context-dependent precon-
dition and effect. The precondition describes the situations under which the
service can be executed; the effect of the service describes the context changes
that are typically induced when executing the service. Knowledge of the pre-
conditions and effects of context-altering services allows the system to react to

� This work is supported by EU FP7 STREP Project SM4ALL (Smart hoMes for
ALL), under Grant No. 224332.

J. Kay et al. (Eds.): Pervasive 2012, LNCS 7319, pp. 461–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

462 K. Rasch et al.

undesired user situations. For example, the system may use the knowledge of user
preferences regarding indoor temperature, humidity et cetera to regulate these
properties using the available pervasive devices. This view has been taken up
in [10]: based on the current user situation, the system automatically composes
and executes the services that are necessary to change the context according to
the user requests. In [13] we propose a proactive service discovery approach that
continuously recommends the currently most interesting services based on user
preferences.

Generally the service descriptions should be as detailed as possible, to allow
the system to select the best fitting action in any given situation. However, the
service descriptions can not be provided a priori by the device manufacturer,
since they are highly dependent on the local environment. For instance, opening
a window on a cold day will change the readings of the nearby temperature
sensors; however, information about which sensors are nearby is not available
to the manufacturer, and may even be situation-dependent. For this reason,
service descriptions have to be manually fitted to the environment, such that
they reflect the interdependencies between the installed devices and sensors.
The descriptions must also be updated whenever new sensors and devices are
added to the system. However, the manual description of services is tedious and
error-prone, hindering non-expert users to adopt the technology [15]. Having to
rely instead on technicians to install new devices is not acceptable for most users.

We propose in this paper a method for automatically learning the capabili-
ties of context-altering services without the need for manual input by users or
technicians. The idea is to observe the behavior of the service with respect to its
environment. Clustering and classification are then applied to the observed data
to find typical patterns of preconditions and effects. The proposed approach pro-
duces localized service descriptions that reflect the setup of the environment and
support situation-dependent effects. Using our approach, new pervasive devices
can simply be plugged into an existing installation without manual configu-
ration. Instead the system will automatically recognize the capabilities of the
new services and can use them, for example, in service recommendation and
composition.

Our contributions in this paper are threefold: we (1) extend a formal model
for context and context-altering services [13,16] (Section 2), (2) present novel al-
gorithms for automatically learning service capabilities from the service behavior
using clustering and classification (Section 3) and (3) propose an architecture for
integrating capability learning in pervasive systems (Section 4). The capability
learning is evaluated in a series of experiments in Section 5. The paper finishes
with an inspection of the related work and our conclusions.

2 Preliminaries

Before we can proceed with describing our approach for learning service capabil-
ities, it is first necessary to formalize the notions of context and context-aware
services.

Automatic Description of Context-Altering Services 463

Context. In [13,16] we present a context model that formalizes the connec-
tion between context and context-altering services. The Hyperspace Analogue
to Context (HAC) models context as a multidimensional space, where each di-
mension denotes a type of context and describes the data type (nominal or
numeric) and range of the context information. All dimensions together span
the multi-dimensional space of all possible context descriptions. The current
context of a user can be described as a point in the context space, for example
the context point c = 〈dlocation = kitchen , dcurtains = closed , dtemp = 25〉 de-
scribes that the user is currently in the kitchen where curtains are closed and
the temperature is 25 ◦C. If the user moves to the bedroom, then a context
change Δc = 〈dlocation = bedroom〉 can be observed.

We consider the internal status of a device a part of context, since it plays an
intrinsic role for describing the user situation. For example, assume that the user
is waking up in the morning in a dark room. The different actions the system
can take to move the user into a more comfortable awake situation depend on
the internal status of the devices in the room; only if the curtains are closed at
the moment, opening them is a viable option for increasing the brightness in the
room, otherwise the installed lamps must be used.

Context-Altering Services. The idea of a service with context-dependent
preconditions and effects is similar to the world-altering services described in [17];
though since we model the surroundings of a service as context, we prefer the
more unassuming term context-altering for these services. The precondition of
a service can be used to filter out unavailable services – only if the current user
context fulfills the condition, then this service is a possible execution choice.
The service effect describes how the execution of the service changes the user
context, and is important for identifying if a service can change an undesired
user situation to a more comfortable one.

This service definition does however not consider that many services in perva-
sive environments can have situation-dependent side effects. For instance, open-
ing the window if it is cold outside will quite likely decrease the indoor tem-
perature; analogously if it is hot outside, the indoor temperature will increase.
Service side effects capture how outside factors, for example seasonal changes,
influence service capabilities. Knowledge about service side effects can help iden-
tify alternatives for broken or undesired services, e.g. opening the window if it
is cool outside could be an energy-efficient alternative to using the air condi-
tioner. Definition 1 extends the previous notion of context-aware services [13]
with service side effects.

Definition 1 (Context-altering service). A context-altering service is situ-
ated in HAC and is described with:

– spre , the main precondition of the service; when c ∈ spre then s is a possible
execution choice.

– seff , the main effect of the service; executing s will change c according to
seff .

464 K. Rasch et al.

– sside , the set of side effects of the service. In sside = {(sspre0 → sseff 0), . . . ,
(ssprem → sseff m)} each pair (ssprei → sseff i) with 0 ≤ i ≤ m describes one
side effect of the service. If c ∈ spre and c ∈ ssprei , then executing s will
change c according to seff and sseff i .

Consider an example service s for opening a window: due to mechanical restric-
tions, the window can only be opened if the curtains in front of it are also open,
and opening the window changes not only the internal status of the device, but
may also have effects on the room temperature. Service precondition and effect
are straightforward to describe: spre=〈Dwindow = closed, Dcurtain = open〉 and
seff=〈Dwindow = open〉.

Each side effect of a service is paired with an additional precondition that
describes the context situation under which the side effect occurs. The actual
effect of s is then a combination of the service’s main effect and all side effects
that can be fulfilled. The window service may have a side effect with sspre0 =
〈DtempIn = [19− 22], DtempOut = [22 − 30]〉 and sseff 0 = 〈DtempIn = [22− 30]〉,
describing that opening the window on a warm day will increase the indoor
temperature. Several such side effects for varying outdoor temperatures may be
described for this service.

The distinction between main preconditions/effects and side effects highlights
the importance of the former for service discovery and composition. First main
preconditions have to be checked to see whether a service is available in a given
situation. Only if this is the case, then side effects can provide useful additional
knowledge.

3 Learning Service Capabilities

Knowledge of service capabilities allows a pervasive system to react to undesired
context situations by executing or recommending services that can change the
context to a more comfortable one. However service capabilities can often not
be provided directly by device manufacturers. Only those parts of service pre-
conditions and effects that concern a device’s internal status can be described
a priori. More expressive capabilities depend on the other devices and sensors
installed in the pervasive environment, and are localized in several ways:

Preconditions. Inter-dependencies between several devices, often of mechan-
ical nature. For example, curtain in front of window or small hallway were
only one of the adjacent doors can be open at a time.

Effects. Depends on installed sensors. For example, heater or lamp cause changes
in nearby temperature and light sensors. Several such sensors may be avail-
able, with different readings depending on their distance from the device.

Requiring either a technician or an experienced user whenever a new device is
added to the system is simply not practical. Instead we propose to automati-
cally learn capabilities by observing a service’s behavior. The observations are
collected in the service’s execution history, and machine learning techniques are

Automatic Description of Context-Altering Services 465

applied to find precondition and effect patterns. The effect of a service can be
identified by finding the context changes that commonly occur after its execu-
tion. Similarly the preconditions of a service are those conditions under which
the service is commonly invoked. We start in the following by describing the
service execution history, and how it can be obtained. Afterwards we present
three algorithms for learning a service’s precondition, effect, and side effects,
respectively.

3.1 Service Execution History

Definition 2 formalizes the notion of a service’s execution history: for every
execution of a service, the context prior to the execution and the observed context
change after the execution are recorded.

Definition 2 (Execution history). The execution history Hs of a service s
after k executions of s is a set Hs = {(c0 → Δc0), . . . , (ck−1 → Δck−1)}. In Hs

each pair ci → Δci with 0 ≤ i < k records the current context ci before the i−th
execution of s and the context change Δci observed after the i-th execution of s.

The set Hpre
s = {c0, . . . , ck−1} is called the precondition history and the set

Heff
s = {Δc0, . . . , Δck−1} the effect history of s. As a simple example consider

Table 1, documenting seven executions of a service s for opening window blinds.
The left hand side (a) of the table shows in seven rows the context ci before

each of the executions i. There is no connection between rows, i.e. other ser-
vices may have been executed and changed c between two executions of s. The
context is described using five different dimensions, including numeric and nom-
inal dimensions. It stands out that the window blinds are always closed before
the execution of s, whereas all other context dimensions vary. This observation
indicates that dblinds = closed is a precondition of opening the blinds.

Table 1. Sample execution history

(a) Context before execution

Temp Light out Blinds Light in TV
c0 22 bright closed dark off
c1 21 dark closed dark on
c2 22 dark closed bright off
c3 20 bright closed dark on
c4 22 dark closed bright on
c5 22 bright closed dark off
c6 22 bright closed dark off

(b) Changes after execution

Blinds Light in TV
Δc0 open bright -
Δc1 open - off
Δc2 open - -
Δc3 open bright -
Δc4 open - -
Δc5 open bright -
Δc6 open bright -

The right hand side (b) of Table 1 shows in corresponding rows the context
changes Δci observed after the i−th execution of s. One clear difference between
(a) and (b) is that in the former all five dimensions are used for describing ci,

466 K. Rasch et al.

but in the latter only a subset of dimensions is used for Δci and many values
are missing. This is because ci describes the full context of the environment,
containing values for each available context dimension. On the contrary, Δci
contains information only about those dimensions whose value changed after
the execution.

In the effect history (b) it stands out again that for each execution a context
change is observed on the “Blinds” dimension, indicating that dblinds = open is
an effect of opening the blinds. Context changes on the “Light in” dimension
are only sometimes observed, hinting that dlightIn = bright could be a possible
side effect of s. And indeed, when reviewing the precondition history (a), it can
be seen that this effect always occurs if dlightOut = bright and dlightIn = dark ,
i.e. a side effect of s is: if it is dark inside and bright outside, then opening the
window blinds will result in it being bright inside. The single change on the “TV”
dimension on the other hand must be regarded as an error as long as no further
observations occur. Such an observation error can happen, for example, if the
TV was turned off at the same time as the blinds were opened and the context
change for the TV service was erroneously attributed to the blinds service.

Recording the Execution History. A major challenge with recording the
execution history is to determine the optimal time for sampling context changes.
The optimal sampling time is very much dependent on the context type that is
being observed. Turning on a light is typically fast and a change in luminosity can
be observed after a few seconds. However it may take 10 minutes or longer until
significant temperature differences can be observed after turning on the heating.
No a priori information is available about the latency of context changes.

A solution to this problem is to record all context changes after a service
execution up to a very long sampling time. However, the longer the sampling time
is, the higher is also the probability that other services are executed during this
time and that the context changes caused by multiple services are overlapping.
The optimal sampling time is thus a trade-off between missing important context
changes and observing irrelevant changes. We will show later that our algorithms
are strong enough to be able to deal with irrelevant context changes, thereby
allowing the use of long sampling times which can avoid the problem of high-
latency dimensions.

3.2 Learning Main Effects

The main effects of a service are constituted by those context changes which
commonly occur when the service is executed. The changes may not necessarily
occur in all service executions, since due to e.g. network errors some changes
may be missing from the effect history. Therefore we consider a context change
to be part of the main effect of a service, if it occurs in at least �ϑe ∗ k	 of all
k service executions. For instance a ϑe of 0.9 ignores occasional missing context
changes, while at the same time filtering out any unrelated context changes from
simultaneously executed services.

Automatic Description of Context-Altering Services 467

Algorithm 1 for learning service main effects takes as input the effect history
and the number of service executions, with a global constant ϑe. Starting from
an empty service effect, for all dimensions that occur in at least one Δci of the
history (Line 2-3) do: If di is nominal, find the most occurring nominal value v.
If v occurs in enough service executions then set dimension i in the main effect
to v (Line 4-8). If di is numeric, an outlier detection [4] must first be performed
to remove all values that deviate markedly from the rest of the values on di.
Such outlier values can occur if the simultaneous execution of other services also
resulted in context changes on di. If after outlier removal enough values remain,
then set dimension i in the main effect to the interval from the minimum value
to the maximum value on di (Line 9-14).

Algorithm 1. Learning service main effects

1: procedure LearnMainEffects(Heff
s ,k)

2: seff = 〈〉
3: for ∀di ∈ D(Heff

s) do
4: if di is nominal then
5: v = maxOccur (Heff

s , di)
6: if count(Heff

s |di = v) ≥ �ϑe ∗ k	 then
7: seffi = v
8: end if
9: else
10: H ′eff

s = removeOutliers(Heff
s , di)

11: if count(H ′eff
s |di not missing) ≥ �ϑe ∗ k	 then

12: seffi = [min(H ′eff
s , di),max (H ′eff

s , di)]
13: end if
14: end if
15: end for
16: return seff

17: end procedure

3.3 Learning Main Preconditions

The main preconditions of a service are those context conditions that commonly
hold when the service is executed. Analogously to the main effects, we say that
a context point is a precondition of a service, if it holds for at least �ϑp ∗ k	 of
all k service executions. Typically we set also ϑp = 0.9. Algorithm 2 for learn-
ing preconditions proceeds similarly to learning main effects by looking at all
dimensions occurring in the precondition history (Line 3). Nominal dimensions
are handled analogously to Algorithm 1 (Line 4-5).

For numeric dimensions an additional step is performed to avoid too wide
dimension intervals. Take for example a service for switching on a light which has
been executed under varying conditions of the outside temperature tOut, such
that the found interval is sefftOut = [−20, 50]. This result has little informative

468 K. Rasch et al.

value as a service precondition, since it merely describes that the service can
be executed under any conditions for tOut. As preconditions we instead want
specific conditions described by a restricted value interval. Let min(Hpre , di) be
the global minimal value andmax(Heff , di) the global maximal value on di in the
precondition histories of any service. Then an interval on di is only considered
a service precondition if it considerably restricts the dimension according to a
parameter τ (Line 7-9). For example if τ = 0.5, then only those intervals are
considered that restrict the dimension to maximal half of its global size.

Algorithm 2. Learning service main preconditions

1: procedure LearnMainPreconditions(Hpre
s ,k)

2: spre = 〈〉
3: for ∀di ∈ D(Hpre

s) do
4: if di is nominal then
5: � proceed analogously to LearnMainEffects
6: else
7: if

max(Hpre
s ,di)−min(Hpre

s ,di)

max(Hpre,di)−min(Hpre ,di)
< τ then

8: sprei = [min(Hpre
s , di),max (Hpre

s , di)]
9: end if
10: end if
11: end for
12: return spre

13: end procedure

A final post-processing step must be performed after the preconditions of all
services have been learned. It may be that the context contains static dimensions,
which never or rarely change during the whole execution history, e.g. the internal
status of an unused device. These dimensions provide little informative value
as preconditions and thus should be excluded. If a dimension is static, then
references to it will be contained in the preconditions of a majority of services.
Therefore it needs to be checked for each dimension di ∈ D(Hpre), whether more
than ϕ service preconditions contain the same value or value interval for di. If
this is the case, then di is removed from the preconditions of all services.

3.4 Learning Side Effects

Side effects of a service are any additional precondition and effect pairs that
can be found in the execution history. For the blinds service in Table 1, one
could, for example, see the pair “If dlightOut = bright ∧ dlightIn = dark , then
dlightIn = bright”. To be considered a side effect, a precondition and effect pair
should be contained in at least �ϑs ∗ k	 and at most �ϑe ∗ k	 executions. Setting
ϑs to a very small value increases the risk that context changes from parallel
service executions are found to be side effects. A high ϑs on the other hand means
that very rare side effects can not be found. For discovery and composition the

Automatic Description of Context-Altering Services 469

correctness of service descriptions is essential, therefore we typically set ϑs = 0.1,
i.e. only side effects occurring in at least 10% of service executions are considered.

As a preprocessing step it is necessary to remove from the history those di-
mensions which were already used in main preconditions and effects respectively
or were found to be static. For preconditions, if spre0 = v1, then there can be
no side effect precondition sspre0 = v2, since side effects only occur if spreand
sspre hold at the same time, which is not possible in this case. Therefore for
the precondition history H ′pre

s = Hpre
s −D(spre) −Dstatic . Analogously for the

effect history H ′eff
s = Heff

s − D(seff). Additionally, numerical dimensions are
discretized to improve the quality of the learning result.

Finding Candidate Effects. It is much easier to find re-occurring patterns
in the effect history than in the precondition history, since the former typically
contains less data dimension. A pattern can also be called a cluster, denoted
as a pair (D,O), where D is the set of dimensions and O the set of indexes of
the objects forming this cluster. For the example data in Table 1b, a cluster
would be found with D = {dlightIn} and O = {0, 3, 5, 6}. The minimum number
of objects in such a cluster must be minSupport = �ϑs ∗ k	 for a service with k
executions. For finding clusters we apply the DBSCAN clustering algorithm [6]
and obtain a set of candidate effect clusters As, which will be the input to the
next step.

Finding Matching Preconditions. Candidate clusters found do not necessar-
ily describe actual service side effects. It can also happen that artificial clusters
are found, which contain noise objects from simultaneous service executions,
such as the TV effect seen in one execution of the example blind service. We
consider a candidate cluster to describe a service side effect if a precondition
can be found such that: if and only if the precondition is fulfilled, the side effect
happens.

This requirement is very similar to the classification rules found by classifi-
cation algorithms. Classification is a supervised data mining technique which is
applied to an already classified set of training data to find rules for classifying
unclassified data. By setting for each ci in H ′pre

s an additional class to indicate
whether the item i is contained in the candidate cluster a ∈ As or not, we can ap-
ply classification learning to H ′pre

s in order to find any rules (i.e. preconditions)
for this class (i.e. effect).

Algorithm 3 for side effects learning takes as input the precondition and the
effect history of a service, with the main precondition and effect dimensions
already removed, plus the number of service executions. In Line 3 effect clustering
using DBSCAN is performed, producing a list of candidate clusters. For each of
those candidate clusters each item ci in the precondition history is annotated
with a class cluster if i is contained in the cluster and a class nocluster+i

otherwise (Line 5-9). A different class for each non-cluster item is used, since we
want to avoid finding rules for class = nocluster.

We have found that the PART classification rule learner [7] achieves good
results on our context data. The result of running PART on the annotated H ′pre

s

470 K. Rasch et al.

Algorithm 3. Learning service side effects

1: procedure LearnSideEffects(H ′pre
s ,H ′eff

s ,k)
2: sside = ∅
3: A = cluster(H ′eff , �ϑs ∗ k)
4: for ∀a = (D,O) ∈ A do
5: for ∀ci ∈ H ′pre do
6: if i ∈ O then classes [i] = cluster

7: else classes [i] = nocluster+i

8: end if
9: end for
10: r = best(PART (H ′pre , classes) | r.class = cluster)
11: if r.correct

r.correct+r.incorrect
> β then

12: sside = sside ∪ (toScope(r) → toScope(a))
13: end if
14: end for
15: return sside

16: end procedure

is a set of rules where each rule r is described by its condition, class and accuracy
in terms of correct and incorrect classifications. We are only interested in the one
rule r with r.class = cluster with the highest number of correct classifications
(Line 10). If this rule also has a low number of incorrect classifications according
to a parameter β, then we can consider the pair (r → a) a side effect of the
service (Line 11). Typically we set β = 0.9.

In Line 12 a function toScope is called, which converts rules and clusters to
context scopes. For converting a cluster starting from an empty scope sseff do
for each dimension di ∈ D: if di is nominal, find the cluster value v that all
items contained in the cluster take on di and set sseffi = v. If di is numeric,
find the minimum value vmin and the maximum value vmax for all cluster items
on di and set sseffi = [vmin , vmax]. Rules consist of a conjunction of di = v (for
nominal di) and di = [vmin , vmax] (for numeric di), so converting a rule to a sspre

is straightforward.

4 System Architecture

We have implemented capability learning for the use in a smart home prototype.
The software architecture of the smart home was deployed during the SM4All
project [5]. Only the introduction of a dedicated Capability learning component
and small changes in the user interface were needed to add automatic service
capability learning to the existing pervasive architecture, as shown in Figure 1.

The pervasive environment, depicted in the lower part of the figure, contains
the devices and sensors using Universal plug and play (UPnP [9]) and Konnex
(KNX [1]) technologies. In order to be usable for our approach, devices and sen-
sors must make their internal status and sensed data available to the system.
UPnP directly fulfills this requirement; a device’s internal status and sensed data

Automatic Description of Context-Altering Services 471

Fig. 1. System architecture

is published using the GENA (General Event Notification Architecture) frame-
work. KNX on the other hand provides only the communication infrastructure
to send control signals to devices and does not fulfill any of the requirements.
To enable the use of KNX devices in the smart home, the Pervasive controller
maintains and publishes the status of all installed KNX devices.

Context information from the various sources is collected and processed by
the Context provisioning component. It is realized using the COPAL (COn-
text Provisioning for ALl) framework [14], a complex context processing system
which produces formatted context events. The context information is used by
the Service Registry to automatically generate service recommendations based
on the current user context and preferences. In the original setup, the Ser-
vice registry uses manually defined service descriptions for generating
recommendations.

We have added the Capability capturing component, which implements the
learning approach presented in this paper. The component is informed by the
user client about which services were executed and listens to context change
events to build the execution histories of the installed services. It then performs
the capability learning, and sends any found service description to the Service
registry, which can than be used for service recommendation.

5 Experiments and Results

This section reports the results of number of experiments which we carried out
in the prototype smart home and through simulation using synthetic data.

472 K. Rasch et al.

5.1 Experiments in the Smart Home Prototype

Experimental Setup. The prototype is owned by Fondazione Santa Lucia1 and
is situated in Rome, Italy. The two bedroom flat is equipped with 13 pervasive
devices and 7 sensors. The prototype is aimed mainly at users with physical
disabilities, resulting in a strong focus on services for home control. Services
are available for controlling doors, windows, curtains, lamps, an automatic bed
and media devices. We found that of the 30 installed services, 28 are context-
altering. Only two software services used for gathering input from the user are
information-providing services [17]. The latency of context changes differs greatly
between the devices. Turning on one of the lamps is fast, with a reaction time of
about 30 milliseconds. In contrast, when raising or lowering the bed it takes 21
seconds until the action is finished and the device publishes an updated internal
status.

Since the prototype is built into a research facility without any access to
the outside world, it was not possible to observe any side effects from outside
factors such as day/night changes. Most of the services have thus rather simple
capabilities referencing only one dimension. Only two service preconditions make
use of more than one dimension: the window curtain in the living room can only
be closed if the window is closed, and vice versa the window can only be opened
if the curtain is open.

For the experiment we set the sampling time to 25 seconds, to ensure that even
the context changes from the slowest device were observed and used for capability
learning. The parameters of the learning algorithms were set as follows: ϑe = 0.9,
ϑp = 0.9, ϑs = 0.1, τ = 0.5, ϕ = 0.3, β = 0.9.

Metrics. In order to check the correctness of the learned capabilities, we first
manually described all services, and compared the automatically learned de-
scriptions with the manually provided ones. The number of executions that are
necessary until the capabilities are learned correctly serves as a metric for eval-
uating how quickly the system learns.

Results. We started executing services in the home sequentially, i.e. with at
least 25 seconds between each service execution. We found that under these cir-
cumstances the system learns the correct service capabilities with on average
about 13 executions per service. Using these automatically generated descrip-
tions, service recommendation worked just as well as with manually provided
service descriptions. Due to a limited access to the prototype and the time-
consuming nature of the experiments, we were only able to run this first exper-
iment in the physical smart home. For further evaluating the system, we ran
the following experiments in a simulation, using the same setup as the actual
prototype, including devices, sensors and device latencies.

In real-world scenarios it is quite unrealistic that all services are executed
sequentially. In order to evaluate how the learning approaches can deal with

1 http://www.hsantalucia.it/

Automatic Description of Context-Altering Services 473

overlapping executions of several services, we gradually decreased the average
time between service executions.

The services were executed in a random fashion, and each experiment was
run for 10 replications. Table 2 lists the learning results for execution intervals
ranging from 30 seconds (i.e sequential execution) to 1 second. In the latter case,
24 other services are executed during the sampling time of one service, creating
heavily overlapping context changes. The number of necessary executions until
the system correctly learns the capabilities are very stable for the 30, 10 and 5
seconds execution intervals. Only for the somewhat unrealistic case of the user
continuously executing a service every second, does the number of necessary
execution increase slightly.

Table 2. Number of necessary executions in prototype system

Average time between executions (in s) 30 10 5 1

Average necessary executions per service 13.1 13.8 14.4 20.8
(Standard deviation) 1.8 2.0 1.5 3.5

Worst case necessary executions 21 25 26.2 47.9

Table 2 also lists the worst case of necessary executions until the system
correctly learns the capabilities. In these cases typically the effect was learned
correctly, however the preconditions were temporarily too strict, e.g. the pre-
condition for switching on the bedroom lamp correctly referenced the status of
the lamp, but also required that the TV should be off. This behavior can be
avoided by increasing the minimum support necessary for starting the learning
process. The higher the minimum support, the longer it takes until all service
descriptions are learned. With a lower minimum support, service descriptions
are learned faster but may, in rare cases, be temporarily too strict. This system
parameter can be easily tweaked by the user to achieve a preferred behavior.

5.2 Experiments Using Synthetic Data

Experimental Setup. The aim of the following experiments is to evaluate
capability learning in a pervasive environment with a higher number of services
and dimensions, plus more complicated preconditions, effects and side effects,
as compared to the smaller-scale prototype system. The simulation environment
creates to this end 70 dimensions in a mix of 50% nominal and 50% numeric
dimensions. The dimension latencies are Gaussian distributed, with μ = σ2 = 1,
i.e. most dimension values change between 1 or 2 seconds after service execution.
50 different services are created, each having main preconditions and effects,
plus up to two two side effects. For creating a service effect, first up to three
dimensions are randomly drawn from the set of all generated context dimensions,
and a random value or value interval is selected for each of them and set as a

474 K. Rasch et al.

service effect. Generation of main precondition as well as side effects and their
preconditions is performed analogously.

The execution of services is simulated, with the time between two service ex-
ecutions drawn from an exponential distribution with μ = executionInterval. All
context changes up to the preset samplingTime are recorded. The same parame-
ters as in the prototype experiments were used for the learning algorithms. All of
the experiments were performed on a desktop PC with an Intel Core 2 Duo CPU
with 3 GHz and 4 GB RAM running Linux, and were run for 25 replications.

Metrics. The results of capability learning and the actual service capabilities
are compared using the standard metrics of precision, recall and F1-score. Recall
measures which percentage of the service capabilities of interest were found by
the learning algorithm. Precision measures which percentage of the learned ser-
vice capabilities of interest are actual capabilities. The F1-score is the harmonic
mean of precision and recall, i.e. F1 = 2 ∗ (precision ∗ recall)/(precision + recall).

Results. The first experiment tests, how well the capability learning algorithm
works depending on the number of executions per service. To test the algorithm
without any simultaneous service executions, we set samplingTime = 10 and
executionInterval = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

F
1-

S
co

re

Service executions

Preconditions
Effects

Side effects

Fig. 2. Accuracy vs execution number

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

F
1-

S
co

re

Execution rate

Preconditions
Effects

Side Effects

Fig. 3. Accuracy vs execution rate

It can be seen in Figure 2 that main preconditions and effects of a service
stabilize very quickly with very high accuracy; after 25 executions of each service
both precondition and effect learning achieve F1 > 0.95 (with 0.01 standard
deviation). The learning of service effects stabilized slightly faster, which is not
surprising since only a few context dimensions have to be mined, compared
to all 70 dimensions for learning preconditions. The accuracy of side effects
stabilizes much slower, since they only occur for some service executions, so more
executions are necessary before side effects can be reliably mined. The accuracy
strongly increases between 20 and 80 executions per service and stabilizes to
F1 > 0.9 at around 125 executions (with 0.02 standard deviation).

Next we stress tested the algorithm with overlapping service executions. We
set the number of executions per service to 100, keep samplingTime = 10 and

Automatic Description of Context-Altering Services 475

vary the executionInterval. For example for executionInterval = 1, service execu-
tions will happen on average every second, so for each of its executions a service
will sample the context changes induced by itself and 9 other services. It can be
seen in Figure 3 that the results for main preconditions and effects are very sta-
ble even for small execution intervals. The side effect accuracy is stable for two
parallel service executions, but degrades for small execution intervals because
context changes from overlapping executions are identified as side effects.

Finally we evaluated how well the algorithm can deal with a wide spread of
dimension latencies by using a samplingTime = 50 and gradually increasing the
variance of the generated latencies 1 ≤ σ2 ≤ 40. We found that the accuracy of
the service capabilities is stable over the whole range of dimension latencies. In
terms of algorithm runtime we found that capabilities can be learned in less than
2 seconds per service, for executionInterval = 1 and 100 executions per service.

The experimental results show that our approach is able to reliably and
quickly learn service main preconditions and effects even under very stressed
conditions. Side effect learning is most reliable under normal, more relaxed con-
ditions where individual services are executed mostly sequentially.

6 Related Work

Compared to the number of proposed service description and annotation lan-
guages, research on automatic or semi-automatic service annotation is sparse.
Patil et al. were among the first to point out the problems of manual annota-
tion [15]. They present the METEOR-S web service annotation framework, which
graphically assists the user in annotating web service descriptions. METEOR-S
uses linguistic and structural matching between a service’s functional description
and candidate ontologies to identify the most fitting concepts for describing a
service semantically and suggests them to the user during the annotation process.
ASSAM is a similar tool by Heß et al., with the difference that ASSAM employs
machine-learning techniques to identify fitting concepts by learning from already
annotated services [8].

Bowers et al. exploit the additional knowledge contained in scientific workflows
for annotation purposes [2]. Scientific workflow systems aim to integrate pre-
processing of data, statistical, or data mining processes on the data and post-
processing and visualization of the results. An actor in such a workflow is any
component (e.g. shell script, web service) that performs work on the data. Actors
are annotated with information about the process they perform for facilitating
automatic composition of such workflows. Bowers et al. propose to automatically
infer missing annotations based on the connections between actors, e.g. if it is
known that an actor produces descriptions of genes, then it can be inferred
that any other actor that takes the descriptions as input performs work on such
descriptions. A similar approach is taken in [11] for finding annotations for inputs
and outputs of web services in a service workflow.

A number of works propose to execute services in order to learn about their
functionalities. Lerman at al. use machine learning techniques to identify poten-
tial input data types for a service [12] and validate them by executing the service

476 K. Rasch et al.

with sample data and observing whether the output is satisfying or erroneous.
Carman at al. aim to find out how the functionality of a service can be described
in terms of other, already annotated services [3]. The target service and varying
combinations of existing services are executed using the same input data, and
the similarity of the output data is checked until a satisfying combination is
found.

Our work distinguishes itself substantially from the described approaches. Pre-
vious works concentrate on finding descriptions for service category and input
and output data types. As far as we know, no work has been published concern-
ing the automatic description of context-altering services, which are common
in pervasive environments. Additionally, all other approaches rely on specific
information which may itself be hard to provide; typically either high-quality
functional service descriptions and ontologies or partially annotated services and
workflows are needed. In contrast, our approach relies solely on observing the
environment. Only the data published by devices and sensors is needed, which
is a functionality already built into popular technologies such as UPnP.

7 Conclusions and Future Work

In this paper we have presented a novel solution for automatically describ-
ing context-altering services through observational learning. Based on a formal
model of context called HAC we have described a set of algorithms for learning
service capabilities by mining on a service’s past behavior. We have shown how
service capability learning can be added to existing pervasive architectures. Ex-
perimental results, both in a smart home system and using simulation, demon-
strate that our algorithms are able to reliably and efficiently identify service
capabilities under varying conditions. Our approach is therefore a step towards
plug and play context-awareness in pervasive environments.

In the future we want to extend our approach with more complicated relations
between preconditions and effect that are currently not supported by our model,
such as for example “If it is cooler outside than inside, then opening the window
will make it cooler inside”. It would also be interesting to study how service
parameters, e.g. the setting of the air conditioner, influence service capabilities.

References

1. KNX standard (Version 1.1). Konnex Association Brussels (2004)
2. Bowers, S., Ludäscher, B.: Towards Automatic Generation of Semantic Types in

Scientific Workflows. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy,
S., Pan, Z., Sheng, Q.Z. (eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 207–
216. Springer, Heidelberg (2005)

3. Carman, M.J., Knoblock, C.A.: Learning semantic descriptions of web information
sources. In: Proceedings of the 20th International Joint Conference on Artifical In-
telligence, pp. 2695–2700. Morgan Kaufmann Publishers Inc., San Francisco (2007)

4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. 41, 15:1–15:58 (2009)

Automatic Description of Context-Altering Services 477

5. Ciccio, C.D., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K., Quer-
zoni, L., Santucci, G., Tino, G.: The homes of tomorrow: service composition and
advanced user interfaces. ICST Transactions on Ambient Systems 11(10-12) (2011)

6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining, pp. 226–231.
AAAI Press (1996)

7. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Proceedings of the Fifteenth International Conference on Machine Learning,
pp. 144–151. Morgan Kaufmann Publishers Inc., San Francisco (1998)

8. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-automatically An-
notating Semantic Web Services. In: McIlraith, S.A., Plexousakis, D., van Harme-
len, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 320–334. Springer, Heidelberg
(2004)

9. ISO 29341-1:2008: Part 1: UPnP Device Architecture Version 1.0. International
Organization for Standardization, Geneva, Switzerland

10. Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation,
composition and simulation of services at home. In: Eigth International Conference
on Service Oriented Computing, pp. 167–181 (2010)

11. Khalid, B., Embury, S.M., Paton, N.W., Stevens, R., Goble, C.A.: Automatic anno-
tation of web services based on workflow definitions. ACM Trans. Web 2, 11:1–11:34
(2008)

12. Lerman, K., Plangprasopchok, A., Knoblock, C.A.: Automatically labeling the in-
puts and outputs of web services. In: Proceedings of the 21st National Conference
on Artificial Intelligence, vol. 2, pp. 1363–1368. AAAI Press (2006)

13. Li, F., Rasch, K., Truong, H.L., Ayani, R., Dustdar, S.: Proactive service discovery
in pervasive environments. In: Proceedings of the 7th International Conference on
Pervasive Services, pp. 126–133 (2010)

14. Li, F., Sehic, S., Dustdar, S.: Copal: An adaptive approach to context provisioning.
In: 2010 IEEE 6th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pp. 286–293 (2010)

15. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: METEOR-S web service
annotation framework. In: Proceedings of the 13th International Conference on
World Wide Web, WWW 2004, pp. 553–562. ACM, New York (2004)

16. Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Context-driven personalized ser-
vice discovery in pervasive environments. World Wide Web 14(4), 295–319 (2011)

17. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web
Services Composition Using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

	Automatic Description of Context-Altering
Services through Observational Learning
	Introduction
	Preliminaries
	Learning Service Capabilities
	Service Execution History
	Learning Main Effects
	Learning Main Preconditions
	Learning Side Effects

	System Architecture
	Experiments and Results
	Experiments in the Smart Home Prototype
	Experiments Using Synthetic Data

	Related Work
	Conclusions and Future Work
	References

