Orthogonal Hyperedge Routing

Michael Wybrow!, Kim Marriott!, and Peter J. Stuckey?

! National ICT Australia, Victoria Laboratory,
Clayton School of Information Technology,
Monash University, Clayton, Victoria 3800, Australia,
{Michael.Wybrow,Kim.Marriott}@monash.edu
2 National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,
University of Melbourne, Victoria 3010, Australia,
pstuckey@unimelb.edu.au

Abstract. Orthogonal connectors are used in drawings of many network
diagrams, especially those representing electrical circuits. Such diagrams
frequently include hyperedges—single edges that connect more than two
endpoints. While many interactive diagram editors provide some form
of automatic connector routing we are unaware of any that provide au-
tomatic routing for orthogonal hyperedge connectors. We give three al-
gorithms for hyperedge routing in an interactive diagramming editor.
The first supports semi-automatic routing in which a route given by the
user is improved by local transformations while the other two support
fully-automatic routing and are heuristics based on an algorithm used
for connector routing in circuit layout.

Keywords: orthogonal routing, hyperedges, circuit diagrams

1 Introduction

Orthogonal connectors are used in drawings of many network diagrams, espe-
cially those representing electrical circuits. Such diagrams frequently include
hyperedges—single edges that connect more than two endpoints. While many
interactive diagram editors provide some form of automatic connector routing
we are unaware of any that support automatic routing for orthogonal hyperedge
connectors. This is the problem we address.

In this paper we describe how we have extended the connector routing li-
brary libavoid? to support orthogonal object-avoiding hyperedge routing in
a commercial diagramming tool for circuit diagrams and the Dunnart diagram
editor.*

We give three algorithms for hyperedge routing that support interactive con-
struction and routing of hyperedges in interactive diagramming tools. The first

3 http://adaptagrams.sourceforge.net/libavoid/
4 Dunnart, including some orthogonal hyperedge routing features, is available for
download from http://www.dunnart.org/.

ﬂ

—
() (d)

Fig. 1. Demonstration of the interaction model. (a) The diagram initially contains a
single hyperedge made up of shapes, junction points and the connectors linking them.
(b) The user drags a shape to a new location causing the connector between it and the
junction point to be rerouted automatically. (¢) Semi-automatic routing is performed to
improve the hyperedge route. (d) If the user desires, they can perform fully-automatic
routing to find a better topology for the hyperedge.

performs semi-automatic routing in which a route given by the user is improved
by local transformations. The other two algorithms perform fully-automatic rout-
ing and are heuristic approaches extending an algorithm used for connector
routing in circuit layout.

Previous research on connector routing in interactive diagramming tools has
focused on poly-line and orthogonal routing for edges, i.e. arcs that connect
two nodes [9,10]. Hyperedge routing generalises this by allowing the connec-
tor to connect multiple nodes. Here we focus on computing orthogonal routes,
i.e. routes composed of horizontal and vertical segments, reflecting the drawing
conventions used in circuit design.

Orthogonal hyperedge routing generalizes the problem of finding a minimal
length rectilinear Steiner tree (MRST) connecting a set of points in the plane [5].
Computing the MRST is NP-Complete [2] and several heuristics and exact meth-
ods are given in [5]. A number of heuristic methods have also been developed
for finding obstacle-avoiding rectilinear Steiner minimal trees (OARSMTS) [1,
6] for automatic connector routing in VLSI design. Our problem differs from
the standard problem studied in the VLSI setting because we are interested in
supporting circuit construction in an interactive diagramming tool. This means
that the algorithms need to be fast enough to support interaction and that the
visual appeal and readability of the routes is important. Thus when comput-

ing the routes we penalize the number of bends as well as the total length and
the semi-automatic routing step ensures that routes are visually distinct and
pleasing in the sense that their paths are not obviously “bad.”

Hyperedge routing is loosely related to edge bundling in which edge segments
originating at the same node are collapsed together [3,4, 8].

The remainder of this paper is organized as follows. In the next section we
define our interaction model and formalize the automatic and semi-automatic
routing problem. In Section 3 we discuss the semi-automatic routing algorithm
which improves a route without changing topology. In Section 4 we give two
algorithms for fully-automatic routing. We give experiments showing the effec-
tiveness of the methods in Section 5. Finally in Section 6 we conclude.

2 Interaction Model and Problem Statement

Our algorithms are designed to support the following interaction model designed
for interactive diagramming tools (Figure 1). It is designed to provide predictable
automatic layout but allow the user to guide and override this. The four kinds
of interaction are:

Creation: The user can create a new hyperedge by defining an initial route
through specification of the bends and junctions that comprise the route.
This specifies the topology of the route. The route is automatically improved
so as to reduce segment lengths or bends but without changing the topology.
We call this semi-automatic routing.

Editing: Whenever the user edits the diagram components, such as moving or
deleting a node or diagram object, semi-automatic routing is used to improve
the hyperedge routes while preserving the topology. See Figure 1(b) and (c).

Automatic routing: If the user is unhappy with a particular hyperedge route
they can explicitly request that the tool performs fully-automatic routing in
which case the system uses heuristic approaches to MRST to find an initial
route which is then improved using semi-automatic routing. See Figure 1(d).

Manual adjustment: If the user is still unhappy they can manually modify
the hyperedge route.

Since explicit support for hyperedges is not common in interactive diagram-
ming tools, users will often work around this by using multiple individual con-
nectors converging at junction points (or small dummy shapes if the software
doesn’t support junctions). This is actually a reasonably natural representation
for hyperedges since it allows for easy incremental construction and alteration
by the user, e.g., drawing a connector from a shape to an existing point on the
hyperedge path. The difference with our approach is that the junction positions
do not need to be tediously managed by the user but can be automatically posi-
tioned in response to diagram changes. Without semi-automatic routing its the
users responsibility to manually modify Figure 1(b) to become Figure 1(c).

Notice that the interaction model requires that semi-automatic routing is
performed very quickly since it must be applied to all hyperedges after most

(a) Before (b) After

(c) Before (d) After

Fig. 2. The two local transformations used to improve the initial route. At the top is
moving a junction to merge parallel routes, at the bottom moving a segment to reduce
overall hyperedge length.

editing actions. In contrast, automatic routing can be slower since it is only per-
formed for a subset of hyperedges at a time, and only when explicitly requested
by the user.

We formalize automatic and semi-automatic hyperedge routing as follows.
We have a set of nodes N and a set of hyperedges H. Each ¢ € N has a fixed
position, width and height as well as a set of connector ports P on its perimeter.
Each p € P is a connector port with a direction of visibility. Each hyperedge
h € H is a non-empty subset of connector ports. We wish to find a route R for
each h. This is a set of horizontal and vertical segments R that form a tree whose
leaf vertices are the connector ports h. The route should not pass through any
of the nodes and should minimize a penalty function p(R) that is a monotonic
function f of the length of R, ||R||, and the number of bends (or equivalently
segments) in R, bends(R), i.e. p(R) = f(||R||,bends(R)). We sometimes refer
to the leaf vertices of the route as the terminals and to the internal nodes as
junctions and bendpoints. In the case of semi-automatic routing we are given an
initial route R’ for h which we must improve.

3 Semi-Automatic Routing

Semi-automatic routing has two steps. The first step is to perform local improve-
ment on the initial route to improve it by rectifying bad routing that is obvious
to the human observer. The local improvement step is novel and is a result of
examining many routes and identifying how to improve these manually.

Local improvement is designed to make local changes to the hyperedge which
reduce edge length and bends. We first build R, a tree representing the routing
for the hyperedge, with the root node of the tree being one of the junctions and
the leaf nodes being the terminal points. Other nodes within the tree are made

up of bendpoints and the remaining junctions from the hyperedge. We use two
local transformations on this tree. They are illustrated in Figure 2.

The first transformation is to remove redundant edges. This looks at each
junction node and if any of the edges in the tree both have another common
endpoint (as well as the junction node), then the junction is moved to that node
and the redundant edge is removed. This reduces the overall connector length
and removes a bend point. The transformation is often not initially necessary
but is still important in cases where the user has manually placed junctions at
positions that may cause the shortest paths from multiple terminals to converge
together before reaching the junction.

The second transformation is first applied in the horizontal dimension, then
the vertical. In the case of the horizontal dimension we move a vertical line
segment (an edge from our path tree) horizontally within the available space
bordered by obstacles, and in the direction with the most divergent paths. This
is shown in Figure 2(c—d) for a horizontal line segment in the vertical dimension.
A line segment will consist of one or more collinear edges from the path tree, and
thus multiple nodes. Using these nodes we maintain for each segment a count
of the edges that diverge to each side. We also perform a sweep of the diagram,
similar to that described in [10], to give us available space to shift each segment
in either direction. We then repeatedly shift unbalanced segments, either to an
obstacle boundary, or to the endpoint of the shortest diverging segment in that
direction, updating the balance counts and merging segments as we do this. We
will also shift balanced segments up to a diverging segment when doing so reduces
the overall “length” of the hyperedge taking into consideration the penalty for
each bend. Once there are no more segments to shift in that dimension, we
remove redundant edges and perform the symmetric vertical process.

For an individual connector the transformations either remove a segment
from the route or move the segment against the side of an obstacle (i.e., a
shape expanded slightly with some buffer space). Thus, they can be applied no
more than O(n + s) times where s is the number of segments in the hyperedge.
The sweep takes O(nlogn) time for each dimension. However, in practice local
improvement is very fast.

The second step in semi-automatic routing is nudging and centering. This
is performed on all hyperedges (and edges) together and is based on that for
orthogonal edge routing [10]. We first determine the relative ordering of connec-
tors in shared edges. In order to make the connector route clearer we want to
nudge these paths apart to make the paths visually distinct. It is important to
do so in a manner which does not introduce unnecessary crossings or bends in
segments. Based on this we determine the exact coordinates of the orthogonal
connector segments. This nudges connector routes a minimum distance apart
to show the relative order of connectors with shared segments and also ensures
that connectors pass down the middle of “alleys” in the diagrams when this does
not lead to additional cost or additional edge crossings. This is described more
fully in [10]. If » is the number of diagram objects and s the total number of
connector segments then this step has O((s + n)?) worst-case complexity.

— i

(a) Heuristic 1 (b) Heuristic 2

Fig. 3. Real-world circuit diagram example showing difference between the two fully-
automatic routing heuristics. (a) Sequential construction of MTST does not appro-
priately discount any shared segments on the paths in the MCST. (b) Interleaved
construction of SPTF and MTST creates better routes, closer to what a human would
draw. These diagrams show the raw output of each heuristic, before the hyperedge
improvement step is performed. Note that Heuristic 2 also tends to result in less work
needing to be performed in the subsequent improvement stage.

4 Fully Automatic Routing

As we have seen, computing an optimal hyperedge route is NP-Hard. In this
section we describe two polynomial time heuristics for computing an initial hy-
peredge route. When combined with the preceding approach for semi-automatic
layout they give a method for fully-automatic routing. Computing the initial
route is quite an expensive operation. However in our model for user interaction
its use is explicitly controlled by the user who must select a set of hyperedges to
be rerouted by the tool.

The basis for our heuristics is the observation that when finding routes mini-
mizing the penalty function we need only consider routes in the orthogonal visi-
bility graph. This was introduced in [10] and is defined as follows. Let I be the set
of interesting points (x,y) in the diagram, i.e. the connector points and corners
of the bounding box of each object. Let X; be the set of x coordinates in I and
Y7 the set of y coordinates in I. The orthogonal visibility graph VG = (V, E) is

Q \ \
® ® ®

Fig. 4. A separated orthogonal visibility graph: v nodes and vertical edges are on a
plane above the h nodes and horizontal edges. The dashed edges connect the two planes
and correspond to a bend.

made up of nodes V' C X x Y7 s.t. (x,y) € V iff there exists ¢/’ s.t. (z,y') € I and
there is no intervening object between (x,y) and (x,y’) and there exists a’ s.t.
(2',y) € I and there is no intervening object between (x,y) and («',y). There
is an edge e € E between each point in V' to its nearest neighbour to the north,
south, east and west iff there is no intervening object in the original diagram.

We slightly modify the orthogonal visibility graph to produce a separated or-
thogonal visibility graph in which each node is split into two nodes (conceptually
on two different planes) corresponding to whether it is connected to horizontally
or vertically neighbouring nodes. Additionally, we add a link between these two
nodes with a weight representing the bend penalty. This simplifies the algorithms
because length and bend penalties are treated uniformly. Figure 4 illustrates the
separated graph.

The orthogonal visibility graph can be constructed in O(n?) time for a dia-
gram with n objects and contains O(n?) vertices and O(n?) edges. An example
orthogonal visibility graph is shown in Figure 5(a). It is quite different to the
standard (non-orthogonal) visibility graph used for poly-line routing. In partic-
ular, the standard visibility graph has O(n) nodes if there are n objects in the
diagram while the orthogonal visibility graph has O(n?) nodes. Both have O(n?)
edges.

4.1 Heuristic 1: Sequential construction of MTST

The starting point for our first heuristic is the VLSI routing algorithm of Long
et al. [7]. This algorithm uses the standard (non-orthogonal) visibility graph
(using the Manhattan distance on visibility edges) and is designed to find the
route of minimal length. We have altered it to work with the separated orthog-
onal visibility graph in order to take the number of bends into account when
computing the cost of a route. Figure 5 gives an overview of the main steps in
fully-automatic routing with this heuristic for an example layout.

Our heuristic works by first constructing the shortest path terminal forest
(SPTF) for the orthogonal visibility graph where the terminals are the hyperedge

i
(a) (b)
T | l
I 1 I B
(c) (d)

Fig. 5. Heuristic 1: In the sequential fully-automatic hyperedge routing the initial route
is found by: (a) computing the separated orthogonal visibility graph, (b) constructing
the shortest path terminal forest (SPTF) and using it to compute an (c) initial hy-
peredge routing from the minimum terminal spanning tree (MTST). Semi-automatic
hyperedge routing takes an initial routing and improves it by (d) performing local
optimization followed by centering and nudging.

nodes and the edges are weighted by their length. This is computed using an
extended Dijkstra shortest path algorithm. This processes edges in order of least
distance from a terminal creating a shortest cost tree around each terminal.
When processing an edge, if its endpoint is not already in a tree it is added
to the tree, otherwise it is marked as a bridge edge if its endpoint belongs to a
different terminal trees or else ignored if its endpoint belongs to the same tree
(self edge). An example SPTF can be seen in Figure 5(b).

Importantly, the use of a high bend penalty along with our separated orthog-
onal visibility graph modification results in shortest cost trees that grow a long
way in a straight line before branching. This helps our approach produce ideal
two-segment connections between far apart terminals that could otherwise be
blocked by the “bushy” growth of traditional SPTFs.

At the end of this step all nodes in the orthogonal visibility graph belong
to exactly one terminal’s shortest cost tree, and edges between these trees are
marked as bridges. Next an extended Kruskal minimum spanning tree algorithm
is used to find the minimum cost spanning tree (MCST) using bridge edges that
connects the terminal trees where the cost of a bridge edge is its weight plus

the cost to reach the terminal node from each of its endpoints. The minimum
terminal spanning tree MTST is then the bridge nodes in the minimum cost
spanning tree and the associated path to each terminal. For more details see [7].
As the number of nodes and edges in the visibility graph is O(n?) the time
complexity of computing the SPTF, MCST and MTST is O(n?logn).

4.2 Heuristic 2: Interleaved construction of SPTF and MTST

The main limitation of Heuristic 1 is that for efficiency the SPTF is computed
before the MCST. This means that the cost when computing the MCST does not
appropriately discount any shared segments on the paths in the MCST, see for
example Figure 3. In essence, we can improve the quality of the solution found
by interleaving computation of the SPTF with that of the MCST and building
the MTST as we go. Our algorithm for this interleaved computation is given in
in Figure 6° and an example of the algorithm’s operation is shown in Figure 7.

The algorithm works by constructing sub-routes connecting disjoint subsets
of the terminals in the original hyperedge, repeatedly combining these using a
bridge edge from MCST until all of the terminals are connected in which case a
MTST has been found.

The algorithm uses two priority queues MCSTpq and SPTFpq for comput-
ing the MCST from the sub-routes and the SPTF. Nodes n in the separated
orthogonal visibility graph (V@) are annotated to indicate whether they have
been reached in the SPTF (reached|n]), and if so the cost of the path to them
(cost[n]), and the sub-route (route[n]) from which the path originates (a set
of edges). Elements in SPTFpq are tuples (¢,n,n’, R) indicating that node n
can be reached from node n’ with a path of cost ¢ from sub-route R. Elements
in MCSTpq are tuples (¢,n,w,n’) indicating that nodes n and n’ have been
reached in the SPTF from different sub routes, say R and R’, and that R and
R’ can be connected by a path with a total cost of ¢ passing through bridge
edge (n,w,n’). We assume a function terms(R) which returns the set of terminal
nodes appearing in route (set of edges) R.

The algorithm repeatedly does one of two things. It can extend the SPTF
around the current set of sub-routes by popping a tuple from the MTSTpq and
adding non-self edges and non-bridge edges to the SPTFpq. Whenever a bridge
edge is encountered the appropriate path is added to the MCSTpq. Or it can
pop a tuple (¢, n,w,n’') from MCSTpq and merge the two sub-routes using the
path through (n,w,n’) and add nodes on the merged route to the MTSTpq with
a zero cost. The algorithm stops when it has created a sub-route connecting all
of the terminals in the hyperedge.

® For the sake of pedagogical clarity the algorithm in Figure 6 omits several details
important for implementation. For example, an implementation should use a num-
ber greater than any potential path in the diagram (including penalties) in place
of co. Also, the algorithm description assumes that the priority queues will never
be empty. This can happen in the case where obstacles prevent all possible paths
between sections of the hyperedge. Please see the implementation in libavoid for
more information.

VG := separated orthogonal visibility graph
SPTFpq := {(c0, L, 1,0)} ; MCSTpq := {(c0, L,0, 1)}
reached|l] := true
for each node n in VG do reached[n] := false endfor
for each terminal n in h do
add (0,n, L,0) to SPTFpq
endfor
repeat
if 2 x cost of top tuple on SPT Fpq < cost of top tuple on MCSTpq then
(¢,n,np, R) := pop SPTFpq
if —reached[n] A reachednp] then
reached[n] := true ; cost[n] := c ; route[n] := R
for each edge (n,w,n’) in VG do
if reached[n'] then
if terms(R) # terms(route[n']) then /* bridge edge */
add (¢ + cost[n'] + w,n,w,n’) to MCSTpq
endif
else /* non self 4+ non bridge edge */
add (¢ +w,n’,n, RU{(n,w,n')}) to SPT Fpq
endif
endfor
endif
else /* found two sub-routes to connect */
(c,n,w,n’) := pop MCSTpq
R := route[n] U route[n’] U {(n,w,n’)}
if terms(R) = h then
return R /* complete hyperedge route */
for each node n” where terms(route[n”]) C terms(R) do
reached[n’'] := false
endfor
for each node n” in R do
add (0,n”, L, R) to SPTFpq
endfor
endif
forever

Fig. 6. Heuristic for computing a route R for hyperedge h using interleaved construc-
tion of the SPTF and MCST.

10

The choice of whether to extend the SPTF or to merge two sub-routes de-
pends on the cost of the top tuples of SPTFpq and MCSTpq. If the current
top tuple on SPTFpq has cost ¢ then we can safely commit to joining the two
sub-routes R and R’ connected by the bridge edge (n,w,n’) in the top tuple of
MTSTpq if its cost ¢’ is no more than 2 x ¢. This is because we have found the
minimum cost path between the sub-routes connected by (n,w,n’). To see this
consider any other path p’ between R and R’. If all nodes on the path have been
reached, then the path must be in MCSTpg and since it was not the top of the
heap, its cost is no less than c. Otherwise not all nodes on the path have been
reached. This means there are two nodes on the path nr and ngr/ respectively
reached from R and R’ that are in SPTFpq. But this means the cost of getting
to nr from R is at least ¢ and to nr/ from R’ is also at least ¢ and so the total
cost of this path is at least 2 x c.

The disadvantage of this algorithm is the increased time complexity. Basi-
cally, whenever we process a path from the MCSTpg we recompute the SPTF
around that path. This means that in the worst case the algorithm has time
complexity O(kn?logn) where k is the number of terminals in the hyperedge.

5 Evaluation

We have implemented all algorithms in the open source libavoid connector
routing library. These features can also be used interactively from within the
Dunnart diagram editor.® We have used the orthogonal hyperedge routing algo-
rithms to find routes for a variety of diagrams.

To investigate performance of the algorithms we ran the following experiment
on a 2008 MacBook Pro with a 2.53 GHz Intel Core 2 Duo processor and 4GB of
memory. Our C++ libavoid implementation was compiled using gcc 4.2.1 with
-03. The experiment used a small representative example from our commercial
partner as well as some larger, randomly generated examples. We measured the
time for each stage of the routing. The results are shown in Table 1. Note the

5 http://www.dunnart.org/

Table 1. Average times taken to compute fully-automatic routing for hyperedges in
a representative circuit diagram and for several larger randomly generated instances.
(Please note, P is the total number of connection pins among all hyperedges H, and
the VisGraph and Improve times are global rather than per hyperedge.)

Diagram size |VisGraph size Times (in msec.) to compute
Diagram |IN| |H| |P|| |V] |E| |VisGraph Heuristicl Heuristic2 Improve
Circuit 52 5| 57| 6,948| 11,083 16 155 167 12
Random-1 | 200 1| 25|20,142| 35,674 56 47 142 25
Random-2 | 200 1| 50|22,674| 40,035 62 61 187 64
Random-3 | 400 1| 50(28,117| 46,952 82 70 304 213
Random-4 | 400| 10| 250{33,587| 52,805 97 74 197 466

11

visibility graph construction and the improvement is performed only once for
each diagram, whereas the times for the full rerouting are average times per
hyperedge.

We found that routing hyperedges of 25-50 terminals in a small diagram of
up to 200 hundred nodes can be performed in a fraction of a second. In the largest
example of 400 nodes, full rerouting for 10 hyperedges (each with 25 terminals)
with heuristic 1 took 1.7 seconds, or just under 3 seconds using heuristic 2. Of
course this would be considerably less if the user was requesting rerouting of
just a single hyperedge. In general, the interleaved heuristic was approximately
3 times slower than the sequential approach, but resulted in much better hy-
peredge routes. The interleaved heuristic also lead to less improvement work
being necessary, though with insignificant gains. Adding additional hyperedges
to any example requires the cost of running the heuristic approach when a user
require rerouting be performed, as well as a small time increase for the local
improvement stage.

6 Conclusion

We have given a practical approach to support hyperedge routing in a diagram-
ming tool designed for electrical circuit design. It produces high-quality routings
and is fast enough to be used for interactive diagramming. Our interaction model
supports hyperedge creation and semi-automatic routing to improve routes af-
ter changes in the diagram, as well as fully-automatic routing, when changes
in the diagram suggest the topology of the hyperedge should change. We give
two heuristics for fully-automatic routing, one very similar to standard VLSI
approaches, and a novel interleaving approach that better captures the cost of
resulting hyperedge. The interleaved heuristic creates markedly better routes at
about three times the runtime cost of the sequential approach.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council. We acknowledge the support of
the ARC through Discovery Project Grant DP0987168 and DP110101390.

References

1. Ajwani, G., Chu, C., Mak, W.K.: FOARS: FLUTE based obstacle-avoiding rectilin-
ear steiner tree construction. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 30(2), 194-204 (Feb 2011)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

3. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hi-
erarchical data. IEEE Transactions on Visualization and Computer Graphics 12,
741-748 (September 2006)

12

10.

Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983-990 (2009)

Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of
Discrete Mathematics, Elsevier, North-Holland (Oct 1992)

Lin, C.W., Chen, S.Y., Li, C.F., Chang, Y.W., Yang, C.L.: Efficient obstacle-
avoiding rectilinear steiner tree construction. In: Proc. of the 2007 Int. Symp. on
Physical Design. pp. 127-134. ISPD ’07, ACM, New York, NY, USA (2007)
Long, J., Zhou, H., Memik, S.O.: EBOARST: An efficient edge-based obstacle-
avoiding rectilinear steiner tree construction algorithm. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems 27(12), 21692182 (2008)
Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving layered graph layouts
with edge bundling. In: Proc. of 18th Int. Symp. on Graph Drawing (GD’10).
LNCS, vol. 6502, pp. 329-340. Springer (2011)

Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Proc.
of 13th Int. Symp. on Graph Drawing (GD’05). LNCS, vol. 3843, pp. 446-457.
Springer (2006)

Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal connector routing. In: Proc.
of 17th Int. Symp. on Graph Drawing (GD’09). LNCS, vol. 5849, pp. 219-231.
Springer (2010)

13

5 E@?E

Llils

9o
L 2]
aal

(h)

Fig. 7. Heuristic 2: In the interleaved approach we (a) incrementally build the SPTF,
storing possible bridging edges. (b) We commit to the cheapest bridge when we reach
a vertex with a cost more than twice the cost of the bridge. We then remove the
bridged terminal’s SPTFs and (c¢) continue, adding new terminals with zero cost for
each vertex along the bridged path. (d—f) We repeat this process, until (g) there is just
one terminal group remaining. This route is then improved by (h) performing local
optimization followed by centering and nudging.

14

