Skip to main content

The Parameterized Complexity of the Shared Center Problem

  • Conference paper
Combinatorial Pattern Matching (CPM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7354))

Included in the following conference series:

  • 957 Accesses

Abstract

Recently, the shared center (SC) problem has been proposed as a mathematical model for inferring the allele-sharing status of a given set of individuals using a database of confirmed haplotypes as reference. The problem was proved to be NP-complete and a ratio-2 polynomial-time approximation algorithm was designed for its minimization version (called the closest shared center (CSC) problem). In this paper, we consider the parameterized complexity of the SC problem. First, we show that the SC problem is W[1]-hard with parameters d and n, where d and n are the radius and the number of (diseased or normal) individuals in the input, respectively. Then, we present two asymptotically optimal parameterized algorithms for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Z.-Z., Wang, L.: Fast exact algorithms for the closest string and substring problems with application to the planted (L,d)-motif model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1400–1410 (2011)

    Article  Google Scholar 

  2. Chen, Z.-Z., Ma, B., Wang, L.: A three-string approach to the closest string problem. Journal of Computer and System Sciences 78, 164–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doi, K., Li, J., Jiang, T.: Minimum Recombinant Haplotype Configuration on Tree Pedigrees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 339–353. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monogr. Comput. Sci. Springer, New York (1999)

    Book  Google Scholar 

  5. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37, 25–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. System Sci. 63, 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leykin, I., Hao, K., Cheng, J., Meyer, N., Pollak, M.R., Smith, R.J.H., Wong, W.H., Rosenow, C., Li, C.: Comparative linkage analysis and visualization of high-density oligonucleotide snp array data. BMC Genetics 6, 7 (2005)

    Article  Google Scholar 

  8. Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype configurations on pedigrees with missing data by integer linear programming. In: Proceedings of Symposium on Computational Molecular Biology (RECOMB), pp. 20–29 (2004)

    Google Scholar 

  9. Li, J., Jiang, T.: Computing the minimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming. Journal of Computational Biology 12(6), 719–739 (2005)

    Article  MATH  Google Scholar 

  10. Ma, W., Yang, Y., Chen, Z.-Z., Wang, L.: Mutation region detection for closely related individuals without a known pedigree. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9, 499–510 (2012)

    Article  Google Scholar 

  11. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM Journal on Computing 39, 1432–1443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marx, D.: Closest substring problems with small distances. SIAM Journal on Computing 38, 1382–1410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sellick, G., Longman, C., Tolmie, J., Newbury-Ecob, R., Geenhalgh, L., Hughes, S., Whiteford, M., Carrett, C., Houlston, R.: Genomewide linkage searches for mendelian disease loci can be efficiently conducted using high-density snp genotyping arrays. Nucleic Acids Res 32(20), e164 (2004)

    Google Scholar 

  14. Wang, L., Zhu, B.: Efficient Algorithms for the Closest String and Distinguishing String Selection Problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Xiao, J., Liu, L., Xia, L., Jiang, T.: Fast elimination of redundant linear equations and reconstruction of recombination-free mendelian inheritance on a pedigree. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 655–664 (2007)

    Google Scholar 

  16. Zhao, R., Zhang, N.: A more efficient closest string algorithm. In: Proceedings of the 2nd International Conference on Bioinformatics and Computational Biology (BICoB), pp. 210–215 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, ZZ., Wang, L., Ma, W. (2012). The Parameterized Complexity of the Shared Center Problem. In: Kärkkäinen, J., Stoye, J. (eds) Combinatorial Pattern Matching. CPM 2012. Lecture Notes in Computer Science, vol 7354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31265-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31265-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31264-9

  • Online ISBN: 978-3-642-31265-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics