Skip to main content

An A-contrario Approach for Obstacle Detection in Assistance Driving Systems

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7324))

Included in the following conference series:

  • 2127 Accesses

Abstract

In the context of automotive driver assistance, we focus on object detection problem considering data acquired by an on-board stereo pair of cameras. The proposed approach is based on a two-level a-contrario model previously in the context of a fixed camera. In this study, the movement of the camera makes necessary the prediction of the current frame to the following instant. The objects are then detected at a window level as exceptional occurrences of clusters of also exceptional occurrences of significantly high pixel values in the image representing the difference with the predicted image from the previous frame. The term ‘exceptional realizations’ refers to a ‘naive’ model describing roughly the absence of objects. We show that such an approach is successful even when the movement of the camera is only approximately known, since the optimization of our criterion provides also the precise movement. Results on simulated and real data illustrate these statements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ammar, M., Le Hégarat-Mascle, S., Reynaud, R., Robin, A.: Video scene object detection using an A Contrario approach. In: Int. Workshop on Image Processing Theory, Tools and Applications (IPTA 2008), p. 8. CDROM (2008)

    Google Scholar 

  2. Bak, A.: Coopération stéréo-mouvement pour la détection d’objets dynamiques. PhD Université Paris-Sud, France (2011)

    Google Scholar 

  3. Betke, M., Haritaglu, E., Davis, L.: Real-Time Multiple Vehicle Detection and Tracking from a Moving Vehicle. Machine Vision and Applications 12(2) (2000)

    Google Scholar 

  4. Boycov, Y., Huttenlocher, D.: Adaptive Bayesian recognition in tracking rigid objects. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. II, pp. 697–704 (2000)

    Google Scholar 

  5. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts and shadows in video streams. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)

    Article  Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 142–149 (2000)

    Google Scholar 

  7. Desolneux, A., Moisan, L., Morel, J.: Meaningful alignments. Int. J. of Computer Vision 40(1), 7–23 (2000)

    Article  MATH  Google Scholar 

  8. Desolneux, A., Moisan, L., Morel, J.: A grouping principle and four applications. IEEE Trans. on Pattern and Machine Intelligence 25(4), 508–513 (2003)

    Article  Google Scholar 

  9. Desolneux, A., Moisan, L., Morel, J.: From Gestalt Theory to Image Analysis. A Probabilistic Approach. Interdisciplinary Applied Mathematics 34, 275 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dibos, F., Pelletier, S., Koepfler, G.: Real-time segmentation of moving objects in a video sequence by a contrario detection. In: IEEE Int. Conf. on Image Processing (ICIP 2005), vol. 1, pp. 1065–1068 (2005)

    Google Scholar 

  11. Franke, U., Heinrich, S.: Fast Obstacle Detection for Urban Traffic Situations. IEEE Trans. Intelligent Transportation Systems 3(3), 173–181 (2002)

    Article  Google Scholar 

  12. Gandhi, T., Trived, M.: Pedestrian Protection Systems: Issues, Survey, and Challenges. IEEE Trans. Intelligent Transportation Systems 8(3), 413–430 (2007)

    Article  Google Scholar 

  13. Gerónimo, D., López, A., Sappa, A., Graf, T.: Survey of Pedestrian Detection for Advanced Driver Assistance Systems. IEEE Trans. Pattern Analysis and Machine Intelligence 32(7), 1239–1258 (2010)

    Article  Google Scholar 

  14. Giachetti, A., Campani, M., Torre, V.: The Use of Optical Flow for Road Navigation. IEEE Trans. Robotics and Automation 14(1), 34–48 (1998)

    Article  Google Scholar 

  15. Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.: An Image Processing System for Driver Assistance. Image and Vision Computing 18(5) (2000)

    Google Scholar 

  16. Le Hégarat-Mascle, S., Reynaud, R., Robin, A.: Simultaneous Localization and Object Detection using an a-contrario approach. In: Indian Conf. on Computer Vision, Graphics and Image Processing ICVGIP 2010, p. 8 (2010)

    Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)

    Google Scholar 

  18. Krotosky, S., Trivedi, M.: On Color-, Infrared-, and Multimodal-Stereo Approaches to Pedestrian Detection. IEEE Trans. Intelligent Transportation Systems 8(4), 619–629 (2007)

    Article  Google Scholar 

  19. Kuehnle, A.: Symmetry-Based Recognition for Vehicle Rears. Pattern Recognition Letters 12, 249–258 (1991)

    Article  Google Scholar 

  20. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Computer Vision Systems 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Papageorgiou, C., Poggio, T.: A Trainable System for Object Detection. Int. J. Computer Vision Systems 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  22. Robin, A., Moisan, L., Le Hégarat-Mascle, S.: A-contrario approach for subpixel change detection in satellite imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 1977–1993 (2010)

    Article  Google Scholar 

  23. Sun, Z., Bebis, G., Miller, R.: On-Road Vehicle Detection: A Review. IEEE Trans. Pattern Analysis and Machine Intelligence 28(5), 694–711 (2006)

    Article  Google Scholar 

  24. Vasiliu, M., Gouiffes, M.: Complex automotive applications. In: Nvidia Research Summit Electronic Collection 2010, vol. 2010, p. 4 (2010)

    Google Scholar 

  25. Vlacic, L., Parent, M., Harashima, F.: Intelligent Vehicle Technologies. Butterworth-Heinemann (2001)

    Google Scholar 

  26. Zavidovique, B., Reynaud, R.: Human and Machine Perception, Situated Vision: A Step Further Towards Autonomous Systems. In: Di Gesu, V. (ed.), p. 31. World Scientific Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ammar, M., Le Hégarat-Mascle, S., Vasiliu, M., Mounier, H. (2012). An A-contrario Approach for Obstacle Detection in Assistance Driving Systems. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31295-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31294-6

  • Online ISBN: 978-3-642-31295-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics