Abstract
In the context of automotive driver assistance, we focus on object detection problem considering data acquired by an on-board stereo pair of cameras. The proposed approach is based on a two-level a-contrario model previously in the context of a fixed camera. In this study, the movement of the camera makes necessary the prediction of the current frame to the following instant. The objects are then detected at a window level as exceptional occurrences of clusters of also exceptional occurrences of significantly high pixel values in the image representing the difference with the predicted image from the previous frame. The term ‘exceptional realizations’ refers to a ‘naive’ model describing roughly the absence of objects. We show that such an approach is successful even when the movement of the camera is only approximately known, since the optimization of our criterion provides also the precise movement. Results on simulated and real data illustrate these statements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ammar, M., Le Hégarat-Mascle, S., Reynaud, R., Robin, A.: Video scene object detection using an A Contrario approach. In: Int. Workshop on Image Processing Theory, Tools and Applications (IPTA 2008), p. 8. CDROM (2008)
Bak, A.: Coopération stéréo-mouvement pour la détection d’objets dynamiques. PhD Université Paris-Sud, France (2011)
Betke, M., Haritaglu, E., Davis, L.: Real-Time Multiple Vehicle Detection and Tracking from a Moving Vehicle. Machine Vision and Applications 12(2) (2000)
Boycov, Y., Huttenlocher, D.: Adaptive Bayesian recognition in tracking rigid objects. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. II, pp. 697–704 (2000)
Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts and shadows in video streams. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 142–149 (2000)
Desolneux, A., Moisan, L., Morel, J.: Meaningful alignments. Int. J. of Computer Vision 40(1), 7–23 (2000)
Desolneux, A., Moisan, L., Morel, J.: A grouping principle and four applications. IEEE Trans. on Pattern and Machine Intelligence 25(4), 508–513 (2003)
Desolneux, A., Moisan, L., Morel, J.: From Gestalt Theory to Image Analysis. A Probabilistic Approach. Interdisciplinary Applied Mathematics 34, 275 (2008)
Dibos, F., Pelletier, S., Koepfler, G.: Real-time segmentation of moving objects in a video sequence by a contrario detection. In: IEEE Int. Conf. on Image Processing (ICIP 2005), vol. 1, pp. 1065–1068 (2005)
Franke, U., Heinrich, S.: Fast Obstacle Detection for Urban Traffic Situations. IEEE Trans. Intelligent Transportation Systems 3(3), 173–181 (2002)
Gandhi, T., Trived, M.: Pedestrian Protection Systems: Issues, Survey, and Challenges. IEEE Trans. Intelligent Transportation Systems 8(3), 413–430 (2007)
Gerónimo, D., López, A., Sappa, A., Graf, T.: Survey of Pedestrian Detection for Advanced Driver Assistance Systems. IEEE Trans. Pattern Analysis and Machine Intelligence 32(7), 1239–1258 (2010)
Giachetti, A., Campani, M., Torre, V.: The Use of Optical Flow for Road Navigation. IEEE Trans. Robotics and Automation 14(1), 34–48 (1998)
Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.: An Image Processing System for Driver Assistance. Image and Vision Computing 18(5) (2000)
Le Hégarat-Mascle, S., Reynaud, R., Robin, A.: Simultaneous Localization and Object Detection using an a-contrario approach. In: Indian Conf. on Computer Vision, Graphics and Image Processing ICVGIP 2010, p. 8 (2010)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)
Krotosky, S., Trivedi, M.: On Color-, Infrared-, and Multimodal-Stereo Approaches to Pedestrian Detection. IEEE Trans. Intelligent Transportation Systems 8(4), 619–629 (2007)
Kuehnle, A.: Symmetry-Based Recognition for Vehicle Rears. Pattern Recognition Letters 12, 249–258 (1991)
Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Computer Vision Systems 60(2), 91–110 (2004)
Papageorgiou, C., Poggio, T.: A Trainable System for Object Detection. Int. J. Computer Vision Systems 38(1), 15–33 (2000)
Robin, A., Moisan, L., Le Hégarat-Mascle, S.: A-contrario approach for subpixel change detection in satellite imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 1977–1993 (2010)
Sun, Z., Bebis, G., Miller, R.: On-Road Vehicle Detection: A Review. IEEE Trans. Pattern Analysis and Machine Intelligence 28(5), 694–711 (2006)
Vasiliu, M., Gouiffes, M.: Complex automotive applications. In: Nvidia Research Summit Electronic Collection 2010, vol. 2010, p. 4 (2010)
Vlacic, L., Parent, M., Harashima, F.: Intelligent Vehicle Technologies. Butterworth-Heinemann (2001)
Zavidovique, B., Reynaud, R.: Human and Machine Perception, Situated Vision: A Step Further Towards Autonomous Systems. In: Di Gesu, V. (ed.), p. 31. World Scientific Press (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ammar, M., Le Hégarat-Mascle, S., Vasiliu, M., Mounier, H. (2012). An A-contrario Approach for Obstacle Detection in Assistance Driving Systems. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-31295-3_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31294-6
Online ISBN: 978-3-642-31295-3
eBook Packages: Computer ScienceComputer Science (R0)