Skip to main content

Clustering-Based Feature Selection for Content Based Remote Sensing Image Retrieval

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7324))

Included in the following conference series:

  • 2131 Accesses

Abstract

During the last three decades, the imaging satellite sensors have acquired huge quantities of remote sensing data. Content-based image retrieval is one of the effective and efficient techniques for utilizing those Earth observation data sources. In this paper, a novel remote sensing image retrieval approach, which is based on feature selection and semi-supervised learning, is proposed. The new method includes four steps. Firstly, clustering is employed to select features and the number of clusters is determined automatically by using the MDL criterion; Secondly, according to an improved clustering validity index, we select the optimal features which can describe the retrieval objectives efficiently; Thirdly, the weights of the selected features are dynamically determined; and finally, an appropriate semi-supervised learning scheme is adaptively selected and image retrieval is thus conducted. Experimental results show that, the proposed approach can achieve comparable performance to the relevance feedback method, while ours need no human interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Datcu, M., Daschiel, H., Pelizzari, A., et al.: Information Mining in Remote Sensing Image Archives: System Concepts. IEEE Transactions on Geoscience and Remote Sensing 41, 2923–2936 (2003)

    Article  Google Scholar 

  2. Marchisio, G.B., Li, W.-H., Sannella, M., Goldschneider, J.R.: Geo-Browse: An integrated environment for satellite image retrieval and mining. In: Proc. IEEE Int. Geosci. and Remote Sens. Symp., vol. 2, pp. 669–673 (1998)

    Google Scholar 

  3. Koperski, K., Marchisio, G., Aksoy, S., Tusk, C.: VisiMine: Interactive mining in image databases. In: Proc. IEEE Int. Geosci. and Remote Sens. Symp., vol. 3, pp. 1810–1812 (2002)

    Google Scholar 

  4. Datcu, M., Seidel, K.: Human-centered concepts for exploration and understanding of Earth observation images. IEEE Transactions on Geoscience and Remote Sensing 43, 601–609 (2005)

    Article  Google Scholar 

  5. Bin, Z., Marshall, R., Hsinchun, C.: Creating a large-scale content-based airphoto image digital library. IEEE Trans. on Image Processing 9, 163–167 (2000)

    Article  Google Scholar 

  6. Lu, L., Liu, R., Liu, N.: Remote sensing image retrieval using color and texture fused features. Journal of Image and Graphics 9, 328–332 (2004)

    Google Scholar 

  7. Qian, B., Ping, G.: Comparative studies on similarity measures for remote sensing image retrieval based on histogram. Journal of Remote Sensing 10, 893–900 (2006)

    Google Scholar 

  8. Ferecatu, M., Boujemaa, N.: Interactive remote sensing image retrieval using active relevance feedback. IEEE Transactions on Geoscience and Remote Sensing 45, 818–826 (2007)

    Article  Google Scholar 

  9. Rui, Y., Huang, T.S., Ortega, M., et al.: Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology 8, 644–655 (1998)

    Article  Google Scholar 

  10. Yao, J., Zhang, Z., Antani, S., et al.: Automatic Medical Image Annotation and Retrieval using SEMI-SECC. In: IEEE International Conference on Multimedia and Expo, pp. 2005–2008 (2006)

    Google Scholar 

  11. Anlei, D., Bir, B.: A new semi-supervised EM algorithm for image retrieval. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Patten Recognition, pp. 110–116 (2003)

    Google Scholar 

  12. Sharma, A., Gang, H., Liu, Z.C., et al.: Meta-tag propagation by co-training an ensemble classifier for improving image search relevance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6 (2008)

    Google Scholar 

  13. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Machine Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  14. Horst, B., AleÅ¡, L., Alexander, S.: MDL principle for robust vector quantisation. Pattern Analysis & Applications 2, 59–72 (1999)

    Article  MATH  Google Scholar 

  15. Manjunath, B.S., Ohm, J.-R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol. 11, 703–715 (2001)

    Article  Google Scholar 

  16. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Machine Intell. 18, 837–842 (1996)

    Article  Google Scholar 

  17. Didaci, L., Roli, F.: Using Co-training and Self-training in Semi-supervised Multiple Classifier Systems. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 522–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Li, S., Tao, J., Wan, D., et al.: Remote sensing image retrieval based on multiple classifiers co-training. Journal of Remote Sensing 14, 493–506 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Zhu, J., Feng, J., Wan, D. (2012). Clustering-Based Feature Selection for Content Based Remote Sensing Image Retrieval. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31295-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31294-6

  • Online ISBN: 978-3-642-31295-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics