Abstract
This paper addresses a simple and effective approach of face and face-part classifier fusion under Gaussian assumption, which is able to process heterogeneous visible wavelength (VW) and near infrared (NIR) image data. Evaluations using existing and publicly available Ada- Boost-based individual classifiers on the recently released CASIA-V4 iris distance database of close-up portrait images as well as on YaleB indicate, that (1) single classifiers are largely affected by the type of training data, especially for NIR and VW data, and therefore prone to errors, (2) by combining individual classifiers a more robust classifier is obtained, (3) processing time overhead is negligible, if individual classifiers exhibit a low false positive rate, and (4) the proposed fusion approach is not only able to reduce false positives, but also false negative detections.
Supported by the Austrian FIT-IT Trust in IT-Systems, project no. 819382.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarabi, P., Lam, J., Keshavarz, A.: Face detection using information fusion. In: Proc. Int’l Conf. on Information Fusion, pp. 1–8 (2007)
Belaroussi, R., Milgram, M., Prevost, L.: Fusion of multiple detectors for face and eyes localization. In: Proc. Int’l Symp. Image and Signal Processing and Analysis (ISPA), pp. 24–29 (2005)
Belaroussi, R., Prevost, L., Milgram, M.: Multi-stage fusion for face localization. In: Proc. Int’l Conf. on Information Fusion, pp. 1–8 (2005)
Belhumeur, P., Jacobs, D., Kriegman, D., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: Proc. IEEE Conf. on Comp. Vis. and Pattern Rec (CVPR), pp. 545–552 (2011)
Burl, M., Leung, T.K., Perona, P.: Face localization via shape statistics. In: Workshop on Automatic Face and Gesture Recognition, pp. 1–6 (1995)
Cristinacce, D., Cootes, T., Scott, I.: A multi-stage approach to facial feature. In: Proc. Brit. Mach. Vis. Conf. (BMVC), pp. 231–240 (2004)
Gan, J.Y., Liang, Y.: A method for face and iris feature fusion in identity authentication. Int. J. Comp. Sci. Network Sec. 6(2), 135–138 (2006)
Georghiades, A.S., Belhumeur, P.N.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)
Jin, L., Yuan, X., Satoh, S., Li, J., Xia, L.: A hybrid classifier for precise and robust eye detection. In: Proc. Int’l Conf. on Pattern Recognition (ICPR), pp. 731–735 (2006)
Kroon, B., Hanjalic, A., Maas, S.: Eye localization for face matching: is it always useful and under what conditions? In: Proc. Int’l Conf. on Content-based Image and Video Retrieval (CIVR), pp. 379–388 (2008)
Ma, Y., Ding, X., Wang, Z., Wang, N.: Robust precise eye location under probabilistic framework. In: Proc. Int’l. Conf. on Autom. Face and Gesture Rec., pp. 339–344 (2004)
Matey, J., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D., Mangru, S., Tinker, M., Zappia, T., Zhao, W.Y.: Iris on the move: Acquisition of images for iris recognition in less constrained environments. Proc. IEEE 94, 1936–1947 (2006)
Micilotta, A., Jon, E., Bowden, O.: Detection and tracking of humans by probabilistic body part assembly. In: Proc. of British Machine Vision Conference (BMVC), pp. 429–438 (2005)
Nanni, L., Lumini, A.: A combination of face/eye detectors for a high performance face detection system. IEEE Multimedia PP(99), 1–15 (2011), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6035655&isnumber=5255202
Lienhart, R., Kuranov, A., Empirical, V.P.: analysis of detection cascades of boosted classifiers for rapid object. Tech. rep., Microproc. Res. Lab, Intel Labs (2002)
Saragih, J., Lucey, S., Cohn, J.: Face alignment through subspace constrained mean-shifts. In: Proc. Int’l Conf. on Computer Vision (ICCV), pp. 1034–1041 (2009)
Uhl, A., Wild, P.: Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation. In: Proc. Int’l Conf. on Biometrics (ICB), pp. 1–8 (to appear, 2012)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Conf. on Comp. Vis. and Pattern Rec (CVPR), pp. 511–518 (2001)
Wang, P., Green, M., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: Proc. IEEE Conf. on Comp. Vis. and Pattern Rec (CVPR), pp. 164–171 (2005)
Wang, Y., Tan, T., Jain, A.: Combining Face and Iris Biometrics for Identity Verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 805–813. Springer, Heidelberg (2003)
Wheeler, F., Perera, A., Abramovich, G., Yu, B., Tu, P.: Stand-off iris recognition system. In: Proc. IEEE Int’l Conf. on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2008)
Xiao, Q.: Face detection using information fusion. In: IEEE Workshop on Comp. Intell. in Biometrics and Identity Mgmnt. (CIBIM), pp. 157–162 (2011)
Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Tech. rep., Microsoft Research (2010), mSR-TR-2010-66
Zhang, Z., Wang, R., Pan, K., Li, S., Zhang, P.: Fusion of Near Infrared Face and Iris Biometrics. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 172–180. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Uhl, A., Wild, P. (2012). Combining Face with Face-Part Detectors under Gaussian Assumption. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-31298-4_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31297-7
Online ISBN: 978-3-642-31298-4
eBook Packages: Computer ScienceComputer Science (R0)