Skip to main content

Combining Face with Face-Part Detectors under Gaussian Assumption

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7325))

Included in the following conference series:

Abstract

This paper addresses a simple and effective approach of face and face-part classifier fusion under Gaussian assumption, which is able to process heterogeneous visible wavelength (VW) and near infrared (NIR) image data. Evaluations using existing and publicly available Ada- Boost-based individual classifiers on the recently released CASIA-V4 iris distance database of close-up portrait images as well as on YaleB indicate, that (1) single classifiers are largely affected by the type of training data, especially for NIR and VW data, and therefore prone to errors, (2) by combining individual classifiers a more robust classifier is obtained, (3) processing time overhead is negligible, if individual classifiers exhibit a low false positive rate, and (4) the proposed fusion approach is not only able to reduce false positives, but also false negative detections.

Supported by the Austrian FIT-IT Trust in IT-Systems, project no. 819382.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarabi, P., Lam, J., Keshavarz, A.: Face detection using information fusion. In: Proc. Int’l Conf. on Information Fusion, pp. 1–8 (2007)

    Google Scholar 

  2. Belaroussi, R., Milgram, M., Prevost, L.: Fusion of multiple detectors for face and eyes localization. In: Proc. Int’l Symp. Image and Signal Processing and Analysis (ISPA), pp. 24–29 (2005)

    Google Scholar 

  3. Belaroussi, R., Prevost, L., Milgram, M.: Multi-stage fusion for face localization. In: Proc. Int’l Conf. on Information Fusion, pp. 1–8 (2005)

    Google Scholar 

  4. Belhumeur, P., Jacobs, D., Kriegman, D., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: Proc. IEEE Conf. on Comp. Vis. and Pattern Rec (CVPR), pp. 545–552 (2011)

    Google Scholar 

  5. Burl, M., Leung, T.K., Perona, P.: Face localization via shape statistics. In: Workshop on Automatic Face and Gesture Recognition, pp. 1–6 (1995)

    Google Scholar 

  6. Cristinacce, D., Cootes, T., Scott, I.: A multi-stage approach to facial feature. In: Proc. Brit. Mach. Vis. Conf. (BMVC), pp. 231–240 (2004)

    Google Scholar 

  7. Gan, J.Y., Liang, Y.: A method for face and iris feature fusion in identity authentication. Int. J. Comp. Sci. Network Sec. 6(2), 135–138 (2006)

    Google Scholar 

  8. Georghiades, A.S., Belhumeur, P.N.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  9. Jin, L., Yuan, X., Satoh, S., Li, J., Xia, L.: A hybrid classifier for precise and robust eye detection. In: Proc. Int’l Conf. on Pattern Recognition (ICPR), pp. 731–735 (2006)

    Google Scholar 

  10. Kroon, B., Hanjalic, A., Maas, S.: Eye localization for face matching: is it always useful and under what conditions? In: Proc. Int’l Conf. on Content-based Image and Video Retrieval (CIVR), pp. 379–388 (2008)

    Google Scholar 

  11. Ma, Y., Ding, X., Wang, Z., Wang, N.: Robust precise eye location under probabilistic framework. In: Proc. Int’l. Conf. on Autom. Face and Gesture Rec., pp. 339–344 (2004)

    Google Scholar 

  12. Matey, J., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D., Mangru, S., Tinker, M., Zappia, T., Zhao, W.Y.: Iris on the move: Acquisition of images for iris recognition in less constrained environments. Proc. IEEE 94, 1936–1947 (2006)

    Article  Google Scholar 

  13. Micilotta, A., Jon, E., Bowden, O.: Detection and tracking of humans by probabilistic body part assembly. In: Proc. of British Machine Vision Conference (BMVC), pp. 429–438 (2005)

    Google Scholar 

  14. Nanni, L., Lumini, A.: A combination of face/eye detectors for a high performance face detection system. IEEE Multimedia PP(99), 1–15 (2011), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6035655&isnumber=5255202

    Google Scholar 

  15. Lienhart, R., Kuranov, A., Empirical, V.P.: analysis of detection cascades of boosted classifiers for rapid object. Tech. rep., Microproc. Res. Lab, Intel Labs (2002)

    Google Scholar 

  16. Saragih, J., Lucey, S., Cohn, J.: Face alignment through subspace constrained mean-shifts. In: Proc. Int’l Conf. on Computer Vision (ICCV), pp. 1034–1041 (2009)

    Google Scholar 

  17. Uhl, A., Wild, P.: Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation. In: Proc. Int’l Conf. on Biometrics (ICB), pp. 1–8 (to appear, 2012)

    Google Scholar 

  18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Conf. on Comp. Vis. and Pattern Rec (CVPR), pp. 511–518 (2001)

    Google Scholar 

  19. Wang, P., Green, M., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: Proc. IEEE Conf. on Comp. Vis. and Pattern Rec (CVPR), pp. 164–171 (2005)

    Google Scholar 

  20. Wang, Y., Tan, T., Jain, A.: Combining Face and Iris Biometrics for Identity Verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 805–813. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Wheeler, F., Perera, A., Abramovich, G., Yu, B., Tu, P.: Stand-off iris recognition system. In: Proc. IEEE Int’l Conf. on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2008)

    Google Scholar 

  22. Xiao, Q.: Face detection using information fusion. In: IEEE Workshop on Comp. Intell. in Biometrics and Identity Mgmnt. (CIBIM), pp. 157–162 (2011)

    Google Scholar 

  23. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Tech. rep., Microsoft Research (2010), mSR-TR-2010-66

    Google Scholar 

  24. Zhang, Z., Wang, R., Pan, K., Li, S., Zhang, P.: Fusion of Near Infrared Face and Iris Biometrics. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 172–180. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uhl, A., Wild, P. (2012). Combining Face with Face-Part Detectors under Gaussian Assumption. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31298-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31297-7

  • Online ISBN: 978-3-642-31298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics