Skip to main content

Automatic Lane Detection in Chromatography Images

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7325))

Included in the following conference series:

  • 2190 Accesses

Abstract

This paper proposes a method for automating the detection of lanes in Thin-Layer Chromatography images. Our approach includes a preprocessing step to detect the image region of interest, followed by background estimation and removal. This image is then projected onto the horizontal direction to integrate the information into a one-dimensional profile. A smoothing filter is applied to this profile and the outcome is the input of the lane detection process, which is performed in three phases. The first one aims at obtaining an initial set of candidate lanes that are further validated or removed in the second phase. The last phase is a refinement step that allows the inclusion of lanes that are not clearly distinguishable in the profile and that were not included in the initial set. The method was evaluated in 66 chromatography images and achieved values of recall, precision and F β -measure of 97.0%, 99.4% and 98.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fried, B., Sherma, J.: Thin-Layer Chromatography. Marcel Dekker, New York (1999)

    Book  Google Scholar 

  2. Rodrigues, L.G., Ferraz, M.J., Rodrigues, D., Pais-Vieira, M., Lima, D., Brady, R.O., Sá-Miranda, M.C.: Neurophysiological behavioral and morphological abnormalities in the Fabry knockout mice. Neurobiology of Disease 33(1), 48–56 (2009)

    Article  Google Scholar 

  3. Elstein, D., Altarescu, G., Beck, M.: Fabry Disease. Springer, Heidelberg (2010)

    Book  Google Scholar 

  4. Houck, M.M., Siegel, J.A.: Fundamentals of Forensic Science. Elsevier, Oxford (2010)

    Google Scholar 

  5. Machado, A.M.C., Campos, M.F.M., Siqueira, A.M., de Carvalho, O.S.F.: An iterative algorithm for segmenting lanes in gel electrophoresis images. In: Proc. X Brazilian Symposium on Computer Graphics and Image Processing, pp. 140–146 (October 1997)

    Google Scholar 

  6. Elder, J.K., Southern, E.M.: Computer-aided analysis of one dimensional restriction fragment gels. In: Bishop, M.J., Rawlings, C.J. (eds.) Nucleic Acid and Protein Sequence Analysis - A Practical Aproach, pp. 165–172. IRL Press, Oxford (1987)

    Google Scholar 

  7. Bajla, I., Holländer, I., Fluch, S., Burg, K., Kollár, M.: An alternative method for electrophoretic gel image analysis in the GelMaster software. Computer Methods and Programs in Biomedicine 77, 209–231 (2005)

    Article  Google Scholar 

  8. Lin, C., Ching, Y., Yang, Y.: An Automatic Method to Compare the Lanes in Gel Electrophoresis (GE) Images. IEEE Transaction on Information Technology in Biomedicine 11(2), 179–189 (2007)

    Article  Google Scholar 

  9. Akbari, A., Fritz, A., Jackobsen, K.S.: Automatic lane detection and separation in one dimensional gel images using continuous wavelet transform. The Royal Society of Chemistry, Analytical Methods 2, 1360–1371 (2010)

    Google Scholar 

  10. Sousa, A.V., Aguiar, R.L., Mendonça, A.M., Campilho, A.C.: Automatic Lane and Band Detection in Images of Thin Layer Chromatography. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 158–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Sotaquira, M.: On the use of distance maps in the analysis of 1D DNA gel images. In: ICDIP 2009: Proceedings of the International Conference on Digital Image Processing, pp. 172–176. IEEE Computer Society (2009)

    Google Scholar 

  12. Barrantes, P., Alvarado, P.: Lane Detection on Gel Electrophoresis Images using Active Shape Models. In: Proc. of the Conference on Technologies for Sustainable Development, TSD 2011, pp. 43–46 (February 2011)

    Google Scholar 

  13. Mendonça, A.M., Sousa, A.V., Sá-Miranda, M.C., Campilho, A.C.: Automatic segmentation of chromatographic images for region of interest delineation. In: Proc. SPIE, vol. 7962, pp. 79623B1-79623B7 (2011)

    Google Scholar 

  14. Chau, F., Liang, Y., Gao, J., Shao, X.: Chemometrics – From Basics to Wavelet Transform. John Wiley & Sons, New Jersey (2004)

    Google Scholar 

  15. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Syndicate of the University of Cambridge (1992)

    Google Scholar 

  16. Soille, P., Jones, C.D., Smith, A.B., Roberts, E.F.: Morphological Image Analysis – Principles and Applications. Springer (2004)

    Google Scholar 

  17. Visa, S., Ralescu, A.: Learning Imbalanced and Overlapping Classes using Fuzzy Sets. In: Workshop on Learning from Imbalanced Datasets II, ICML (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreira, B.M., Sousa, A.V., Mendonça, A.M., Campilho, A. (2012). Automatic Lane Detection in Chromatography Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31298-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31297-7

  • Online ISBN: 978-3-642-31298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics