Abstract
Diabetic retinopathy is one of the leading cause of blindness caused due to increase of insulin in blood. It is a progressive disease and needs an early detection and treatment. Proliferative diabetic retinopathy is an advance stage and causes severe visual impairments. Early and accurate detection of proliferative diabetic retinopathy is very important and crucial for protection of patient’s vision. Automated systems for screening of proliferative diabetic retinopathy should accurately detect the blood vessels to identify vascular abnormalities. In this paper, we present a method for screening of proliferative diabetic retinopathy using blood vessel structure. The method extracts the vascular pattern by enhancing the blood vessels using wavelet response and segmenting the blood vessels using a multilayered thresholding technique. It uses a Gaussian mixture model based classifier for detection of neovascularization. The proposed method is evaluated using publicly available retinal image databases and results show that the proposed system identifies the vascular abnormalities with high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klein, R., Klein, B.E.K., Moss, S.E.: Visual impairment in diabetes. Ophthalmology 91, 1–9 (1984)
Sjolie, A.K., Stephenson, J., Aldington, S., Kohner, E., Janka, H., Stevens, L., Fuller, J.: Retinopathy and vision loss in insulin-dependent diabetes in Europe. Ophthalmology 104, 252–260 (1997)
Effective Health Care - Complications of diabetes: Screening for retinopathy and Management of foot ulcers. Royal Society of Medicine Press 5(4) (1999)
Ronald, P.C., Peng, T.K.: A textbook of clinical ophthalmology: a practical guide to disorders of the eyes and their management, 3rd edn. World Scientific Publishing Company, Singapore (2003)
Kohner, E.M., Aldington, S.J., Stratton, I.M., Manley, S.E., Holman, R.R., Matthews, D.R.: United Kingdom Prospective Diabetes Study, 30: diabetic retinopathy at diagnosis of noninsulin-dependent diabetes mellitus and associated risk factors. Arch. Ophthalmol. 116, 297–303 (1998)
Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)
Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)
Yen, G.G., Leong, W.-F.: A sorting system for hierarchical grading of diabetic fundus images: A preliminary study. IEEE Trans. Inf. Technol. Biomed. 12(1), 118–130 (2008)
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3), 263–269 (1989)
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19(3), 203–210 (2000)
Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)
Jiang, X., Mojon, D.: Adaptive local thresholding by verification based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)
Goatman, K.A., Fleming, A.D., Philip, S., Williams, G.J., Olson, J.A., Sharp, P.F.: Detection of New Vessels on the Optic Disc Using Retinal Photographs. IEEE Transactions on Medical Imaging 30(4), 972–979 (2011)
Agurto, C., Murray, V., Barriga, E., Murillo, S., Pattichis, M., Davis, H., Russell, S., AbrĂ¡moff, M., Soliz, P.: Multiscale AM-FM Methods for Diabetic Retinopathy Lesion Detection. IEEE Transactions on Medical Imaging 29(2), 502–512 (2010)
Antoine, J.P., Carette, P., Murenzi, R., Piette, B.: Image analysis with two-dimensional continuous wavelet transform. Signal Processing 31(3), 241–272 (1993)
Akram, M.U., Khan, S.A.: Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Engineering with Computers (2011), doi:10.1007/s00366-011-0253-7
Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Prentice Hall (2002)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 1st edn. Academic, Burlington (1999)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)
Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. Technical report (2005)
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical report (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akram, M.U., Tariq, A., Khan, S.A. (2012). Detection of Neovascularization for Screening of Proliferative Diabetic Retinopathy. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-31298-4_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31297-7
Online ISBN: 978-3-642-31298-4
eBook Packages: Computer ScienceComputer Science (R0)