Skip to main content

Simple Geodesic Regression for Image Time-Series

  • Conference paper
Biomedical Image Registration (WBIR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7359))

Included in the following conference series:

Abstract

Geodesic regression generalizes linear regression to general Riemannian manifolds. Applied to images, it allows for a compact approximation of an image time-series through an initial image and an initial momentum. Geodesic regression requires the definition of a squared residual (squared distance) between the regression geodesic and the measurement images. In principle, this squared distance should also be defined through a geodesic connecting an image on the regression geodesic to its respective measurement. However, in practice only standard registration distances (such as sum of squared distances) are used, to reduce computation time. This paper describes a simplified geodesic regression method which approximates the registration-based distances with respect to a fixed initial image. This results in dramatically simplified computations. In particular, the method becomes straightforward to implement using readily available large displacement diffeomorphic metric mapping (LDDMM) shooting algorithms and decouples the problem into pairwise image registrations allowing parallel computations. We evaluate the approach using 2D synthetic images and real 3D brain images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  2. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Niethammer, M., Hart, G., Zach, C.: An optimal control approach for the registration of image time series. In: Conference on Decision and Control (CDC), pp. 2427–2434. IEEE (2009)

    Google Scholar 

  4. Trouvé, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: A second order point of view. Arxiv preprint arXiv:1003.3895 (2010)

    Google Scholar 

  5. Fishbaugh, J., Durrleman, S., Gerig, G.: Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 401–408. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population Shape Regression from Random Design Data. In: 11th IEEE ICCV (2007)

    Google Scholar 

  7. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic Regression for Image Time-Series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Fletcher, P.T.: Geodesic regression on Riemannian manifolds. In: Proceedings of International Workshop on Mathematical Foundations of Computational Anatomy, MFCA (2011)

    Google Scholar 

  9. Yang, X., Goh, A., Qiu, A.: Approximations of the Diffeomorphic Metric and Their Applications in Shape Learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 257–270. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Foundations of Computational Mathematics 5(2), 173–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. International Journal of Computer Vision, 1–13 (2011)

    Google Scholar 

  12. Risser, L., Vialard, F.-X., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D.: Simultaneous Multi-Scale Registration Using Large Deformation Diffeomorphic Metric Mapping. IEEE Transcations on Medical Imaging 30(10), 1746–1759 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, Y., Shi, Y., Styner, M., Sanchez, M., Niethammer, M. (2012). Simple Geodesic Regression for Image Time-Series. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2012. Lecture Notes in Computer Science, vol 7359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31340-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31340-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31339-4

  • Online ISBN: 978-3-642-31340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics