Abstract
We propose a meta-algorithm for registration improvement by combining deformable image registrations (MetaReg). It is inspired by a well-established method from machine learning, the combination of classifiers. MetaReg consists of two main components: (1) A strategy for composing an improved registration by combining deformation fields from different registration algorithms. (2) A method for regularization of deformation fields post registration (UnfoldReg). In order to compare and combine different registrations, MetaReg utilizes a landmark-based classifier for assessment of local registration quality. We present preliminary results of MetaReg, evaluated on five CT pulmonary breathhold inspiration and expiration scan pairs, employing a set of three registration algorithms (NiftyReg, Demons, Elastix). MetaReg generated for each scan pair a registration that is better than any registration obtained by each registration algorithm separately. On average, 10% improvement is achieved, with a reduction of 30% of regions with misalignments larger than 5mm, compared to the best single registration algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Danielsson, P.E.: Euclidean Distance Mapping. Computer Graphics and Image Processing 14, 227–248 (1980)
Ibáñez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Kitware, Inc. (2005)
Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)
Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29(1), 196–205 (2010)
Lee, S., Wolberg, G., Shin, S.: Scattered data interpolation with multilevel b-splines. Trans. on Visualization and Computer Graphics 3(3), 228–244 (1997)
Modat, M., McClelland, J., Ourselin, S.: Lung registration using the NiftyReg package. Medical Image Analysis for the Clinic - A Grand Challenge 2010, 33–42 (2010)
Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine 98(3), 278–284 (2010)
Muenzing, S.E.A., Murphy, K., van Ginneken, B., Pluim, J.P.W.: Automatic detection of registration errors for quality assessment in medical image registration. In: Proceedings of the SPIE, vol. 7259, pp. 72590K–72590K–9 (2009)
Muenzing, S.E.A., van Ginneken, B., Pluim, J.P.W.: Knowledge-driven regularization of the deformation field for PDE based nonrigid registration algorithms. Medical Image Analysis for the Clinic - A Grand Challenge 2010, 127–136 (2010)
Murphy, K., van Ginneken, B., Klein, S., Staring, M., de Hoop, B., Viergever, M., Pluim, J.P.W.: Semi-automatic construction of reference standards for evaluation of image registration. Medical Image Analysis 15, 71–84 (2011)
Murphy, K., et al.: Evaluation of registration methods on thoracic CT: The EMPIRE10 challenge. IEEE Trans. on Medical Imaging 30, 1901–1920 (2011)
van Rikxoort, E., de Hoop, B., Viergever, M., Prokop, M., van Ginneken, B.: Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Medical Physics 36(7), 2934–2947 (2009)
Staring, M., Klein, S., Reiber, J., Niessen, W., Stoel, B.: Pulmonary Image Registration With elastix Using a Standard Intensity-Based Algorithm. Medical Image Analysis for the Clinic - A Grand Challenge 2010 (2010)
Tustison, N., Gee, J.: N-d c k b-spline scattered data approximation. The Insight Journal. (2005)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric Diffeomorphic Image Registration with the Demons Algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muenzing, S.E.A., van Ginneken, B., Pluim, J.P.W. (2012). On Combining Algorithms for Deformable Image Registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2012. Lecture Notes in Computer Science, vol 7359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31340-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-31340-0_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31339-4
Online ISBN: 978-3-642-31340-0
eBook Packages: Computer ScienceComputer Science (R0)