Abstract
Non-rigid mutual information (MI) based image registration is prone to converge to local optima due to Parzen or histogram based density estimation used in conjunction with estimation of a high dimensional deformation field. We describe an approach for non-rigid registration that uses the log-likelihood of the target image given the deformed template as a similarity metric, wherein the distribution is modeled using a Gaussian mixture model (GMM). Using GMMs reduces the density estimation step to that of estimating the parameters of the GMM, thus being more computationally efficient and requiring fewer number of samples for accurate estimation. We compare the performance of our approach (GMM-Cond) with that of MI with Parzen density estimation (Parzen-MI), on inter-subject and inter-modality (CT to MR) mouse images. Mouse image registration is challenging because of the presence of a rigid skeleton within non-rigid soft tissue, and due to major shape and posture variability in inter-subject registration. The results show that GMM-Cond has higher registration accuracy than Parzen-MI in terms of sum of squared difference in intensity and dice coefficients of overall and skeletal overlap. The GMM-Cond approach is a general approach that can be considered a semi-parametric approximation to MI based registration, and can be used an alternative to MI for high dimensional non-rigid registration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ashburner, J., Friston, K.: Nonlinear spatial normalization using basis functions. Human Brain Mapping 7(4), 254–266 (1999)
Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)
Baiker, M., Staring, M., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 516–523. Springer, Heidelberg (2011)
Silverman, B.W.: Density estimation for Statistics and Data analysis. Chapman and Hall (1986)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7(4), 565–575 (2003)
Zhang, J., Rangarajan, A.: Bayesian multimodality non-rigid image registration via conditional density estimation. In: Information Proc. in Med. Imaging, pp. 499–511 (2003)
Krum, W., Griffin, L.D., Hill, D.L.G.: Non-rigid image registration: Theory and practice. Br. Journ. Radiol. 1(77), S140–S153 (2004)
Leventon, M.E., Grimson, W.E.L.: Multi-modal Volume Registration Using Joint Intensity Distributions. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1057–1066. Springer, Heidelberg (1998)
MacLachlan, G., Peel, D.: Finite Mixture Models. Wiley (2000)
Kovacevic, N., Hamarneh, G., Henkelman, M.: Anatomically Guided Registration of Whole Body Mouse MR Images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 870–877. Springer, Heidelberg (2003)
Papademetris, X., Dione, D.P., Dobrucki, L.W., Staib, L.H., Sinusas, A.J.: Articulated Rigid Registration for Serial Lower-Limb Mouse Imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005, Part II. LNCS, vol. 3750, pp. 919–926. Springer, Heidelberg (2005)
Pohl, K.M., Fisher, J., Grimson, W.E.L., Kikinis, R., Wells, W.M.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)
Roche, A., Malandain, G., Ayache, N., Prima, S.: Towards a Better Comprehension of Similarity Measures Used in Medical Image Registration. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 555–566. Springer, Heidelberg (1999)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2001)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast mr images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)
Somayajula, S., Joshi, A.A., Leahy, R.M.: Mutual information based non-rigid mouse registration using a scale-space approach. In: 5th IEEE Intl. Symposium on Biomedical Imaging, pp. 1147–1150 (2008)
Van de Sompel, D., Brady, M.: Regularising limited view tomography using anatomical reference images and information theoretic similarity metrics. Medical Image Analysis 16(1), 278–300 (2012)
Wang, H., Stout, D., Chatziioannou, A.: Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-ct images. IEEE Transactions on Medical Imaging 31(1), 88–102 (2012)
Woods, R.P., Grafton, S.T., Watson, J.D.G., Sicotte, N.L., Mazziotta, J.C.: Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computed Assisted Tomography 22, 139–152 (1998)
Wells, W., Viola, P., Atsumi, H., Nakajima, S., Nakajima, S., Kikinis, R.: Multimodal volume registration by maximization of mutual information. Med. Image Analysis 1(1), 35–51 (1996)
Li, X., Peterson, T.E., Gore, J.C., Dawant, B.M.: Automatic Inter-subject Registration of Whole Body Images. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 18–25. Springer, Heidelberg (2006)
Zöllei, L., Jenkinson, M., Timoner, S.J., Wells, W.M.: A Marginalized MAP Approach and EM Optimization for Pair-Wise Registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 662–674. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Somayajula, S., Joshi, A.A., Leahy, R.M. (2012). Non-rigid Image Registration Using Gaussian Mixture Models. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2012. Lecture Notes in Computer Science, vol 7359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31340-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-31340-0_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31339-4
Online ISBN: 978-3-642-31340-0
eBook Packages: Computer ScienceComputer Science (R0)